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SUBORDINASI PEMBEZA FUNGSI ANALISIS DENGAN PEKALI AWAL

TETAP

ABSTRAK

Tesis ini mengkaji fungsi analisis bernilai kompleks dalam cakera unit dengan pe-

kali awal tetap atau dengan pekali kedua tetap dalam pengembangan sirinya. Kaedah

subordinasi pembeza disesuai dan dipertingkatkan untuk membolehkan penggunaan-

nya, yang diperlukan bagi mendapatkan kelas-kelas fungsi teraku yang sesuai. Tiga

masalah penyelidikan dibincangkan di dalam tesis ini. Pertama, subordinasi pembeza

linear peringkat kedua

A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z),

dipertimbangkan. Syarat-syarat pada fungsi bernilai kompleks A,B,C,D dan h diter-

bitkan untuk memastikan implikasi pembeza yang bersesuaian diperoleh yang meli-

batkan penyelesaian p. Untuk pilihan tertentu bagi fungsi h, implikasi-implikasi ini

ditafsirkan secara geometri. Hubungkait akan dibuat dengan penemuan-penemuan ter-

dahulu. Hasil subordinasi-subordinasi tersebut seterusnya digunakan untuk mengkaji

sifat-sifat rangkuman untuk pengoperasi kamiran linear pada subkelas fungsi analisis

dengan pekali awal tetap tertentu. Kepentingannya akan menjadi pengoperasi kamiran

linear berbentuk

I[ f ](z) =
ρ + γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt,

dengan ρ dan γ adalah nombor kompleks, dan fungsi φ ,ϕ dan f tergolong dalam be-

ix



berapa kelas fungsi analisis. Pengoperasi kamiran linear ditunjukkan memeta subkelas

fungsi analisis dengan pekali awal tetap tertentu ke dalam dirinya sendiri. Masalah

terakhir yang dipertimbangkan adalah untuk mendapatkan syarat-syarat cukup untuk

fungsi analisis dengan pekali awal tetap untuk menjadi bak-bintang atau cembung.

Syarat-syarat ini dirangka menggunakan terbitan Schwarzian.
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DIFFERENTIAL SUBORDINATION OF ANALYTIC FUNCTIONS WITH

FIXED INITIAL COEFFICIENT

ABSTRACT

This thesis investigates complex-valued analytic functions in the unit disk with

fixed initial coefficient or with fixed second coefficient in its series expansion. The

methodology of differential subordination is adapted and enhanced to enable its use,

which requires obtaining appropriate classes of admissible functions. Three research

problems are discussed in this thesis. First, the linear second-order differential subor-

dination
A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z),

is considered. Conditions on the complex-valued functions A,B,C,D and h are derived

to ensure an appropriate differential implication is obtained involving the solutions p.

For particular choices of h, these implications are interpreted geometrically. Connec-

tions are made with earlier known results. These subordination results are next used to

study inclusion properties for linear integral operators on certain subclasses of analytic

functions with fixed initial coefficient. Of interest would be the linear integral operator

of the form

I[ f ](z) =
ρ + γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt,

where ρ and γ are complex numbers, and φ ,ϕ and f belong to some classes of analytic

functions. The linear integral operator is shown to map certain subclasses of analytic

functions with fixed initial coefficient into itself. The final problem considered is in

obtaining sufficient conditions for analytic functions with fixed initial coefficient to be

starlike or convex. These conditions are framed in terms of the Schwarzian derivative.
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CHAPTER 1

INTRODUCTION

The theory of differential subordination is one of the active research topics in the the-

ory of univalent functions. Research on the theory of differential subordination was

pioneered by Miller and Mocanu and their monograph [35] compiled a very com-

prehensive discussion and many applications of the theory. In the last few decades,

hundreds of articles related to the subject have been published and many interesting

results obtained. By employing the methodology of differential subordination, this

thesis investigates the analytic function in unit disk having the fixed initial coefficient

in their series expansion.

In the following, a brief introduction of elementary concepts from the theory of

univalent functions as well as the theory of differential subordination will be given

which will be very useful in later chapters. The relevant definitions, known results and

proofs of most of the results can be found in the standard text books by [2, 20, 22, 24,

35].

1.1 Analytic Univalent Functions

Let C be the complex plane. Let z0 ∈ C and r > 0. Denote by

D(z0,r) := {z : z ∈ C, |z− z0|< r}

to be the neighbourhood of z0. A set D of C is called an open set if for every point z0

in D, there is a neighborhood of z0 contained in D. An open set D is connected if there
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is a polygonal path in D joining any pair of points in D.

A domain is an open connected set and it is said to be simply connected if the inte-

rior domain to every simple closed curve in D lies completely within D. Geometrically,

a simply connected domain is a domain without any holes.

A continuous complex-valued function f is differentiable at a point z0 ∈ C if the

limit

f ′(z0) = lim
z→z0

f (z)− f (z0)

z− z0
,

exists. Such a function f is said to be analytic at z0 if it is differentiable at z0 and at

every point in some neighbourhood of z0. It is analytic on D if it is analytic at every

point in D. It is known in [2, Corollary 3.3.2, p. 179] that an analytic function f has

derivatives of all orders. Thus f has a Taylor series expansion given by

f (z) =
∞

∑
n=0

an(z− z0)
n, an =

f (n)(z0)

n!
,

convergent in some open disk centered at z0.

Let H (U) denote the class of functions which are analytic in the open unit disk

U= {z ∈C : |z|< 1}. For a ∈C and n ∈N := {1,2,3, . . .}, let H [a,n] be the subclass

of H (U) consisting of functions f of the form

f (z) = a+
∞

∑
k=n

akzk, (z ∈ U).

Let A denote the class of all analytic functions f defined on U and normalized by the

conditions f (0) = 0 and f ′(0) = 1. Thus each such function f has the form

2



f (z) = z+
∞

∑
k=2

akzk, (z ∈ U). (1.1)

Generally, let An denote the class of all normalized analytic functions f of the form

f (z) = z+
∞

∑
k=n+1

akzk, (z ∈ U, n ∈ N).

where A1 ≡A .

A function f is univalent in D if it is one-to-one in D. In other words, the function

f does not take the same value twice, that is, f (z1) 6= f (z2) for all pairs of distinct

points z1 and z2 in D with z1 6= z2. Thus, a function f is called locally univalent at z0 if

it is one-to-one in some neighbourhood of z0. For an analytic function f , the condition

f ′(z0) 6= 0 is equivalent to local univalence at z0.

Theorem 1.1. Let f be analytic in a domain D. Then f is locally univalent in a

neighbourhood of z0 in D if and only if f ′(z0) 6= 0.

Proof. Let f be locally univalent in a neighbourhood of z0 in D and suppose that

f ′(z0) = 0. Then

g(z) := f (z)− f (z0)

has a zero of order n, n ≥ 2, at z0. Since zeroes of a non-constant analytic function

are isolated, there exists an r > 0 so that both g and f ′ have no zeroes in the punctured

disk 0 < |z− z0| ≤ r. Let

m = min
z∈C
|g(z)|

where C = {z : |z− z0| = r}, and h(z) := f (z0)− a, where a ∈ C satisfies 0 < |a−

f (z0)| < m. Then |h(z)| < |g(z)| on C. It follows from Rouche’s theorem [20, p. 4]

that g and g+h have the same numbers of zeroes inside C. Thus f (z)−a has at least

two zeroes inside C. Observe that none of these zeros can be at z0. Since f ′(z) 6= 0 in
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the punctured disk 0 < |z− z0| ≤ r, these zeros must be simple. Thus f (z) = a at two

or more points inside C. This contradicts the assumption that f is locally univalent in

a neighbourhood of z0 in D.

Now, assume that f ′(z0) 6= 0 and f is not locally univalent in any neighbourhood

of z0 in D. For each positive integer n, there are points αn and βn in D(z0,ρ/n) such

that αn 6= βn but f (αn) = f (βn). Since αn,βn ∈ D(z0,ρ/n), it follows that

lim
n→∞

αn = z0 and lim
n→∞

βn = z0.

Since f (αn) = f (βn), by Cauchy’s integral formula, it is evident that

0 =
f (αn)− f (βn)

αn−βn

=
1

αn−βn

{
1

2πi

∫
C

[
f (z)

z−αn
− f (z)

z−βn

]
dz
}

=
1

2πi

∫
C

f (z)
(z−αn)(z−βn)

dz.

Since αn→ z0 and βn→ z0 as n→∞, it follows that f (z)/[(z−αn)(z−βn)] converges

uniformly to f (z)/(z− z0)
2. Thus

0 = lim
n→∞

1
2πi

∫
C

f (z)
(z−αn)(z−βn)

dz =
1

2πi

∫
C

f (z)
(z− z0)2 dz = f ′(z0),

which contradicts the assumption that f ′(z) 6= 0. Therefore f must be locally univalent

in a neighbourhood of z0 in D.

Let γ be a smooth arc represented parametrically by z = z(t), a ≤ t ≤ b, and let

f be a function defined at all points z on γ . Suppose that γ passes through a point

z0 = z(t0), a≤ t0 ≤ b, at which f is analytic and that f ′(z0) 6= 0. If w(t) = f [z(t)], then

w′(t0) = f ′[z(t0)]z′(t0), and this means that
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argw′(t0) = arg f ′[z(t0)]+ argz′(t0).

Let ψ0 = argw′(t0), φ0 = arg f ′[z(t0)] and θ0 = argz′(t0), then ψ0 = φ0 + θ0. Thus

φ0 = ψ0−θ0, and the angles ψ0 and θ0 differs by the angle of rotation φ0 = arg f ′(z0).

Let γ1 and γ2 be two smooth arcs passing through z0, and let θ1 and θ2 be angles of

inclination of directed lines tangent to γ1 and γ2, respectively, at z0. Then the quantities

ψ1 = φ0+θ1 and ψ2 = φ0+θ2 are angles of inclination of directed lines tangent to the

images curves Γ1 and Γ2, respectively, at w0 = f (z0). Thus ψ2−ψ1 = θ2−θ1, that is,

the angle ψ2−ψ1 from Γ1 to Γ2 is the same as the angle θ2−θ1 from γ1 to γ2.

This angle-preserving property leads to the notion of conformal maps. A function

that preserves both the magnitude and orientation of angles is said to be conformal.

The transformation w = f (z) is conformal at z0 if f is analytic at z0 and f ′(z0) 6= 0. It

follows from Theorem 1.1 that the locally univalent functions are also conformal. A

function which is both analytic and univalent on D is called a conformal mapping of

D because of its angle-preserving property.

A Möbius transformation is a linear fractional transformation of the form

M(z) =
az+b
cz+d

, (z ∈ C),

where the coefficients a,b,c,d are complex constants satisfying ad−bc 6= 0 and C =

C∪ {∞} is the extended complex plane. The Möbius transformation M provides a

conformal mapping of C onto itself.

The famous Riemann mapping theorem states that any simply connected domain

which is not the whole complex plane C, can be mapped conformally onto U.
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Theorem 1.2. (Riemann Mapping Theorem) [20, p. 11] Let D be a simply con-

nected domain which is a proper subset of the complex plane C. If ζ be a given point

in D, then there is a unique function f , analytic and univalent in D, which maps D

conformally onto the unit disk U satisfying f (ζ ) = 0 and f ′(ζ )> 0.

In view of this theorem, the study of conformal mappings on simply connected do-

mains may be restricted to study of analytic univalent functions in U.

Denote by S the subclass of A which are univalent and of the form (1.1). Thus S

is the class of all normalized univalent functions in U. An important member of the

class S is the Koebe function given by

k(z) =
z

(1− z)2 =
1
4

[(
1+ z
1− z

)2

−1

]
=

∞

∑
n=1

nzn, (z ∈ U), (1.2)

which maps U conformally onto C \ {w ∈ R : w ≤ −1/4}. The Koebe function and

its rotations e−iαk(eiαz),α ∈ R, play a very important role in the study of the class S .

These functions are extremal for various problems in the class S .

In 1916, Bieberbach [12] conjectured that |an| ≤ n,(n≥ 2) for f in S . This conjec-

ture is known as Bieberbach conjecture. But he only proved for the case when n = 2

and this result was called Bieberbach theorem.

Theorem 1.3. (Bieberbach Theorem) [22, p. 33] If f ∈ S , then

|a2| ≤ 2.

Equality occurs if and only if f is a rotation of the Koebe function k.

This theorem will be proved later in Section 1.3.

The Bieberbach conjecture was a difficult open problem as many mathematicians
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have investigated it only for certain values of n. However, in 1985, De Branges [19]

successfully proved this conjecture for all coefficients n with the help of the hyperge-

ometric functions.

Theorem 1.4. (Bieberbach Conjecture or de Branges Theorem) [19] The coefficients

of each function f ∈ S satisfy |an| ≤ n for n = 2,3, . . .. Equality occurs if and only if

f is the Koebe function k or one of its rotations.

The coefficient inequality |a2| ≤ 2 from the Bieberbach theorem yields many im-

portant properties of univalent functions in the class S . One of the important conse-

quences is the well-known covering theorem due to Koebe.

Theorem 1.5. (Koebe One-Quarter Theorem) [20, p. 31] The range of every function

of the class S contains the disk {w : |w|< 1/4}.

This theorem will be proved later in Section 1.3.

Another important consequence of the Bieberbach theorem is the distortion theo-

rem which provides sharp upper and lower bounds for | f ′(z)|.

Theorem 1.6. (Distortion Theorem) [20, p. 32] If f ∈ S , then

1− r
(1+ r)3 ≤ | f

′(z)| ≤ 1+ r
(1− r)3 , (|z|= r < 1).

Equality occurs if and only if f is a suitable rotation of the Koebe function k.

This theorem will be proved later in Section 1.3. The distortion theorem can be applied

to obtain sharp upper and lower bounds for | f (z)| and that result is known as the growth

theorem.
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Theorem 1.7. (Growth Theorem) [20, p. 33] If f ∈ S , then

r
(1+ r)2 ≤ | f (z)| ≤

r
(1− r)2 , (|z|= r < 1).

Equality occurs if and only if f is a suitable rotation of the Koebe function k.

There are many criteria for functions to be univalent. In 1915, Alexander proved

an interesting result for the univalence of analytic functions. He showed that, if f

is analytic in U satisfying Re f ′(z) > 0 for each z ∈ U, then f is univalent in U

[22, Theorem 12, p. 88]. Furthermore, in 1935, Noshiro [42] and Warschawski [57]

independently proved the following well-known Noshiro-Warschawski theorem.

Theorem 1.8. (Noshiro-Warschawski Theorem) [42, 57] If an analytic function f

satisfies Re
(
eiα f ′(z)

)
> 0 for some real α and for all z in a convex domain D,

then f is univalent in D.

Another criterion for functions to be univalent involved the Schwarzian derivative.

The Schwarzian derivative of a locally univalent analytic function f in U is given by

{ f ,z} :=
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

.

Here f ′ and f ′′ denote the first and second derivatives of f , respectively. The Schwarzian

derivative of any Möbius transformation M is identically zero. Let S denote the map-

ping from f to its Schwarzian derivative. It has the property

S (M ◦ f ) = (S (M)◦ f ) ·
(

f ′
)2

+S ( f ) = S ( f ),

because S (M)= 0 for every Möbius transformation M. This shows that the Schwarzian

derivative is invariant under Möbius transformation M [20, p. 259].
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In 1949, Nehari [39] discovered that certain estimates on the Schwarzian derivative

imply global univalence.

Theorem 1.9. [39, Theorem I, p. 545] If f ∈ S , then

|{ f ,z}| ≤ 6
(1−|z|2)2 . (1.3)

Conversely, if f ∈ A satisfies

|{ f ,z}| ≤ 2
(1−|z|2)2 , (1.4)

then f is univalent in U.

The constant 6 and 2 are the best possible. In the same paper, Nehari [39] also obtained

the sufficient condition |{ f ,z}| ≤ π2/2 that implies the univalence of f in U. The

constant π2/2 is the best possible.

In a similar vein, Pokornyi [50] in 1951 obtained

|{ f ,z}| ≤ 4
(1−|z|2)

(1.5)

is sufficient to ensure the univalence of f and the constant 4 is again best possible.

Later, Nehari [40] unified all criterion (1.3), (1.4) and (1.5) by establishing the follow-

ing general criterion of univalence

|{ f ,z}| ≤ 2p(|z|),

where p is a positive continuous even function defined on the interval (−1,1), with the

properties that p(−x) = p(x), (1− x2)2 p(x) is nonincreasing on the interval [0,1) and

the differential equation y′′(x)+ p(x)y(x) = 0 has a solution which does not vanish for

(−1,1). The function p is referred as Nehari function.

The problem of finding similar bounds on the Schwarzian derivative that would im-

ply univalence was investigated by other authors including Chuaqui et al. [17], Chuaqui
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et al. [18], Nunokawa et al. [43], Opoolaa and Fadipe-Josepha [44], Ovesea-Tudor and

Shigeyoshi [45] and Ozaki and Nunokawa [47].

1.2 Subclasses of Analytic Univalent Functions

This section begins by discussing an important class of functions, so called the func-

tions with positive real part. The class P , consisting of all the functions which have

positive real part in U will be introduced and some of their basic properties will be

given as the following.

Definition 1.1. (Functions with Positive Real Part) [22, p. 78] A normalized analytic

function h in U of the form

h(z) = 1+
∞

∑
n=1

cnzn, (z ∈ U), (1.6)

with

Re h(z)> 0

is called a function with positive real part in U.

A function with positive real part is also known as a Carathéodory function. An im-

portant example of a function of the class P is the Möbius function defined by

m(z)≡ 1+ z
1− z

= 1+2
∞

∑
n=1

zn (1.7)

which maps U onto the half-plane {Re w > 0}. The role of this Möbius function m is

the same as that of Koebe function in the class S . But the function m is not the only

extremal functions in the class P , there are many other functions of the form (1.6),

which are extremal for the class P .

The following lemma gives the coefficient bound for functions in the class P .
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Lemma 1.1. (Carathéodory’s Lemma) [20, p. 41] If h ∈ P is of the form (1.6), then

the following sharp estimate holds:

|cn| ≤ 2, (n = 1,2,3, . . .).

Equality occurs for the Möbius function m.

The following theorem gives the growth and distortion results for the class P .

Theorem 1.10. [24, p. 31] If h ∈ P and |z|= r < 1, then

1− r
1+ r

≤ |h(z)| ≤ 1+ r
1− r

,

1− r
1+ r

≤ Re h(z)≤ 1+ r
1− r

,

|h′(z)| ≤
(

2
1− r2

)
Re h(z)≤ 2

(1− r)2 .

Equalities occurs if and only if h is a suitable rotation of the Möbius function m.

The class P is directly related to a number of important and basic subclasses of

univalent functions. These subclasses include the well-known classes of convex and

starlike functions. The geometric properties of these classes along with their relation-

ships with each other will be given.

A set D in C is called convex if for every pair of points w1 and w2 lying in D, the

line segment joining w1 and w2 also lies entirely in D, that is,

w1,w2 ∈ D, 0≤ t ≤ 1 =⇒ tw1 +(1− t)w2 ∈ D.

Definition 1.2. (Convex Functions) [22, p. 107] If a function f ∈ A maps U onto a

convex domain, then f is called a convex function.
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The subclass of S consisting of all convex functions on U is denoted by CV . An

analytic description of the class CV is given by the following result.

Theorem 1.11. (Analytical Characterization of Convex Functions) [24, p. 38] Let f ∈

A . Then f is convex if and only if f ′(0) 6= 0 and

Re
(

1+
z f ′′(z)
f ′(z)

)
> 0, (z ∈ U).

For instance, the Möbius function m in (1.7) and the function

L(z) =
z

1− z
(1.8)

which maps U onto the half-plane {Re z > −1/2} are convex functions in U. The

following theorem gives the coefficient bound for f ∈ CV and this result was proved

by Loewner [32] in 1917.

Theorem 1.12. [32] If f ∈ CV , then

|an| ≤ 1, (n = 2,3, . . .).

Equality occurs for all n when f is a rotation of the function L defined in (1.8).

Let w0 be an interior point of a set D in C. Then D is said to be starlike with respect

to w0 if the line segment joining w0 to every other point w in D lies in D, that is,

w ∈ D, 0≤ t ≤ 1 =⇒ (1− t)w0 + tw ∈ D.

For w0 = 0, the set D is called starlike with respect to the origin or simply a starlike

domain.

Definition 1.3. (Starlike Functions) [22, p. 108] If a function f maps U onto a domain

that is starlike with respect to w0, then f is called a starlike function with respect to

w0. In the special case that w0 = 0, f is simply called a starlike function.
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The subclass of S consisting of all starlike functions on U is denoted by ST . An

analytic description of the class ST is given by the following result.

Theorem 1.13. (Analytical Characterization of Starlike Functions) [24, p. 36] Let f ∈

A with f (0) = 0. Then f is starlike if and only if f ′(0) 6= 0 and

Re
(

z f ′(z)
f (z)

)
> 0, (z ∈ U).

The Koebe function in (1.2) is an example of starlike function in U. The following

theorem gives the coefficient bound for f ∈ ST and this result was proved by Nevan-

linna [41] in 1921.

Theorem 1.14. [41] If f ∈ ST , then

|an| ≤ n, (n = 2,3, . . .).

Equality occurs for all n when f is a rotation of the Koebe function k.

Every convex function is evidently starlike. Thus the subclasses of S consisting of

convex and starlike functions satisfy the following inclusion relation:

CV ⊂ ST ⊂ S .

Observe that the classes CV and ST are closely related to each other. It is given by

the following important relationship:

f ∈ CV ⇐⇒ z f ′(z) ∈ ST , (z ∈ U),

due to Alexander [1] in 1915. This result is known as Alexander’s theorem.

In 1936, Robertson [53] introduced the classes of convex and starlike functions of

order α for 0≤ α < 1, which are defined by
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CV (α) :=
{

f ∈A : Re
(

1+
z f ′′(z)
f ′(z)

)
> α ; z ∈ U

}
,

and

ST (α) :=
{

f ∈A : Re
(

z f ′(z)
f (z)

)
> α ; z ∈ U

}
,

respectively. In particular, CV (0) = CV and ST (0) = ST . It is clear that

CV (α)⊆ CV and ST (α)⊆ ST .

Another important relationship between the classes CV and ST is given by the

classical result of Strohhäcker [55] in 1933. He proved that if f ∈ CV , then f ∈

ST (1/2), where ST (1/2) is the class of starlike functions of order 1/2. The fol-

lowing theorem is an extension of the result.

Theorem 1.15. [35, p. 115] If 0 ≤ α < 1, then the order of starlikeness of convex

functions of order α is given by

τ(α) := τ(α;1,0) =


2α−1

2−22(1−α) , i f α 6= 1
2 ,

1
2ln2 , i f α = 1

2 .

The following result gives the growth and distortion theorem for convex functions

of order α due to Robertson [53].

Theorem 1.16. [53] Let f ∈ CV (α), 0≤ α < 1, and |z|= r < 1. Then

1
(1+ r)2(1−α)

≤ | f ′(z)| ≤ 1
(1− r)2(1−α)

.

If α 6= 1/2, then

(1+ r)2α−1−1
2α−1

≤ | f (z)| ≤ 1− (1− r)2α−1

2α−1
,
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and if α = 1/2, then

Log (1+ r)≤ | f (z)| ≤ −Log (1− r).

All of these inequalities are sharp. The extremal functions are rotations of

f (z) =


1−(1−z)2α−1

2α−1 , α 6= 1
2 ,

−Log (1− z), α = 1
2 .

1.3 Analytic Univalent Functions with Fixed Intial Coefficient

Closely related to the class S is the class Σ consisting of functions g which are analytic

and univalent on ∆ = {z∈C : |z|> 1} except for a simple pole at infinity with residue

1. The Laurent series expansion of such functions is of the form

g(z) = z+b0 +
b1

z
+

b2

z2 + · · ·= z+b0 +
∞

∑
n=1

bn

zn , (z ∈ ∆). (1.9)

This function g maps ∆ onto the complement of a connected compact set E. The

subclass of Σ that omits z = 0 in E is denoted by Σ0.

Observe that if f ∈ S is given by (1.1), then

g(z) =
1

f (1/z)
= z−a2 +(a2

2−a3)
1
z
+ · · · (z ∈ ∆),

in Σ0. Conversely, if g ∈ Σ0 is given by (1.9), then

f (z) =
1

g(1/z)
= z−b0z2 +(b2

0−b1)z3 + · · · (z ∈ U),

in S . In fact, the univalence of f implies the univalence of g as well.

In 1914, Gronwall [26] proved a theorem about the Laurent series coefficients of
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functions in the class Σ which is known as the area theorem.

Theorem 1.17. (Area Theorem) [26] If g ∈ Σ is given by (1.9), then

∞

∑
n=1

n|bn|2 ≤ 1,

with equality if and only if g ∈ Σ̃.

The direct application of the area theorem can be seen clearly in the proof of

Bieberbach theorem. Bieberbach theorem states that every function f in the class S

has the property |a2| ≤ 2. The following proof can be found in [22, p. 34].

Proof of Theorem 1.3 (Bieberbach Theorem). Suppose that f ∈ S . A square root trans-

formation yields the function

g(z) =
√

f (z2) = z+
1
2

a2z3 +

(
1
2

a3−
1
8

a2
2

)
z5 + · · ·

in S . An inversion to g produce a function

h(z) =
1

g(1/z)
= z− 1

2
a2

1
z
+a3

1
z3 + · · ·

in Σ0. By the area theorem, it follows that

∞

∑
n=1

n|bn|2 =
∣∣∣−a2

2

∣∣∣2 +3|a3|2 + · · · ≤ 1,

and so | − a2/2|2 ≤ 1 or |a2| ≤ 2, as required. If a2 = 2eiα , for some real α , it is

clear that the coefficient bn = 0 for all n ≥ 2. This implies that h has the form h(z) =

z− eiα/z. Hence,

g(z) =
1

h(1/z)
=

1
1/z− eiαz

=
z

1− eiαz2 .

Since f (z2) = g2(z) = z2/(1− eiαz2)2, and thus f (z) = z/(1− eiαz)2 is a rotation of
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the Koebe function.

The Bieberbach inequality |a2| ≤ 2 can be used to prove other properties of func-

tions f in the class S . The famous covering theorem due to Koebe, that is, the Koebe

one-quarter theorem is an important application of Bieberbach theorem. It ensures that

the image of U under every f in S contains an open disk centered at the origin with

radius 1/4. The following proof can be found in [20, p. 31].

Proof of Theorem 1.5 (Koebe One-Quarter Theorem). Every function f ∈ S satisfies

|a2| ≤ 2 by Bieberbach theorem. Suppose that ω /∈ f (U), and the omitted value trans-

formation yields the function

g(z) =
ω f (z)

ω− f (z)
= z+

(
a2 +

1
ω

)
z2 + · · ·

in S . From Bieberbach theorem, it follows that |a2 + 1/ω| ≤ 2 and the triangle in-

equality yields ∣∣∣∣ 1
ω

∣∣∣∣−|a2| ≤
∣∣∣∣a2 +

1
ω

∣∣∣∣≤ 2.

Since |a2| ≤ 2, it is clear that |1/ω| ≤ 4, or |ω| ≥ 1/4. If |ω|= 1/4, then |a2|= 2, and

hence f is some rotation of the Koebe function.

The proof shows that the Koebe function and its rotations are the only functions in the

class S which omit a value of modulus 1/4. Thus the range of every other function in

S covers a disk of larger radius.

Bieberbach inequality |a2| ≤ 2 also has application to establish the estimate leading

to the fundamental theorem about univalent functions, that is, the Koebe distortion

theorem. It yields bounds on | f ′(z)| as f ranges over the class S . The following proof
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can be found in [24, p. 15].

Proof of Theorem 1.6 (Distortion Theorem). Suppose that f ∈ S and let

w(ζ ) =
ζ + z

1+ z̄ζ
= z+(1−|z|2)ζ − z̄(1−|z|2)ζ 2 + · · · , (ζ ∈ U),

be a Möbius transformation of U onto U with w(0) = z and w′(0) = 1−|z|2. Then the

disk automorphism transformation yields the function

g(ζ ) =
f (w(ζ ))− f (z)
(1−|z|2) f ′(z)

= ζ +

[
(1−|z|2) f ′′(z)

2 f ′(z)
− z̄
]

ζ
2 + · · · , (ζ ∈ U),

in S . By Bieberbach theorem, it follows that

∣∣∣∣(1−|z|2) f ′′(z)
2 f ′(z)

− z̄
∣∣∣∣≤ 2.

Multiplying by 2|z|/(1−|z|2) to the latter inequality yields

∣∣∣∣z f ′′(z)
f ′(z)

− 2|z|2

1−|z|2

∣∣∣∣≤ 4|z|
1−|z|2

.

Note that the inequality |τ| ≤ ξ implies that −ξ ≤ Re {τ} ≤ ξ . Thus

2|z|2

1−|z|2
− 4|z|

1−|z|2
≤ Re

{
z f ′′(z)
f ′(z)

}
≤ 2|z|2

1−|z|2
+

4|z|
1−|z|2

. (1.10)

Since f ′(z) 6= 0 and f ′(0) = 1, there exists an analytic branch of log f ′ such that

log f ′(z)|z=0 = 0. For z = reiθ , it follows that

∂

∂ r
log | f ′(z)|= ∂

∂ r
Re {log f ′(z)}= 1

r
Re
{

z f ′′(z)
f ′(z)

}
.

It is evident from (1.10) that

18



2r2−4r
1− r2 ≤ r

∂

∂ r
log
∣∣∣ f ′(reiθ

)∣∣∣≤ 2r2 +4r
1− r2 ,

or

2r−4
1− r2 ≤

∂

∂ r
log
∣∣∣ f ′(reiθ

)∣∣∣≤ 2r+4
1− r2 .

Integrating the last inequality with respect to r gives

∫ r

0

2u−4
1−u2 du≤ log

∣∣∣ f ′(reiθ
)∣∣∣≤ ∫ r

0

2u+4
1−u2 du.

Since

∫ r

0

2u−4
1−u2 du =

∫ r

0

1
u−1

− 3
1+u

du = log(1− r)−3log(1+ r),

and ∫ r

0

2u+4
1−u2 du =

∫ r

0

1
1+u

+
3

1−u
du = log(1+ r)−3log(1− r),

it is clear that

log
(

1− r
(1+ r)3

)
≤ log

∣∣∣ f ′(reiθ
)∣∣∣≤ log

(
1+ r

(1− r)3

)
.

Since log | f ′(0)|= log1 = 0, exponentiating both sides yields

1− r
(1+ r)3 ≤ | f

′(z)| ≤ 1+ r
(1− r)3 .

In view of the influence of the second coefficient on the investigation of geometric

properties of the class S , the class of analytic functions with a fixed initial coefficient

will be investigated in this thesis. Let H β [a,n] be the class consisting of all analytic

functions f in U of the form
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f (z) = a+β zn +an+1zn+1 + · · ·

with a fixed initial coefficient β in C. Since its rotation e−iα f (eiαz) is in H β [a,n],

choose α such that β > 0. In the other words, since f ∈ H β [a,n] is rotationally

invariance, β is assumed to be a non-negative real number.

Further, let An,b be the class consisting of all normalized analytic functions f ∈An

in U of the form

f (z) = z+bzn+1 +an+2zn+2 + · · ·

where the coefficient an+1 = b is a fixed non-negative real number. Write A1,b as Ab.

Thus, the subclass of Ab consisting of univalent functions is denoted by S b and satisfy

S b ⊂ S . For 0≤ α < 1, let CV b(α) and ST b(α) be the classes of convex and starlike

functions of order α in S b, respectively. When α = 0, these classes are denoted by

CV b := CV b(0) and ST b := ST b(0).

1.4 Differential Subordination

A differential subordination in the complex plane is a generalization of a differential

inequality on the real line. Obtaining information about the properties of a function

from its derivatives plays an important role in functions of a real variable. In the study

of complex-valued functions, there are differential implications that are characterizing

the functions. A simple example is the Noshiro-Warschawski theorem (Theorem 1.8)

in Section 1.1.

In the view of the principle of subordination between analytic functions, let f and g be

a member of H (U). Then, the function f is said to be subordinate to g in U, written

as
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f ≺ g or f (z)≺ g(z), (z ∈ U),

if there exists an analytic function w in U with w(0) = 0, and |w(z)| < 1, such that

f (z) = g(w(z)). In particular, if g is univalent in U, the above subordination is equiva-

lent to

f (0) = g(0) and f (U)⊆ g(U).

The basic notations, definitions and theorems stated in this section can be found

in the monograph by Miller and Mocanu, which is the main reference that provides a

comprehensive discussion on differential subordination. To develop the main idea of

Miller and Mocanu’s theory on differential subordination, let p be analytic in U with

p(0) = a and let ψ(r,s, t;z) : C3×U→ C. Let Ω and 4 be any subsets in C and

consider the differential implication:

{
ψ
(

p(z),zp′(z),z2 p′′(z);z
)

: z ∈ U
}
⊂Ω ⇒ p(U)⊂4. (1.11)

The following definition is required to formulate the fundamental result in the the-

ory of differential subordination.

Definition 1.4. [35, Definition 2.2b, p. 21] Denote by Q the set of functions q that are

analytic and univalent in U\E(q), where

E(q) := {ζ ∈ ∂U : lim
z→ζ

q(z) = ∞},

and are such that q′(ζ ) 6= 0 for ζ ∈ ∂U\E(q).

By the definition of Q, a suitably defined class of functions Ψ as below is a basis to

develop the fundamental result in the theory of differential subordination.

Definition 1.5. (Admissibility Condition) [35, Definition 2.3a, p. 27] Let Ω be a
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domain in C, q ∈ Q, and n be a positive integer. The class of admissible functions

Ψn(Ω,q) consists of functions ψ : C3×U→ C satisfying the admissibility condition

ψ(r,s, t;z) /∈Ω (1.12)

whenever r = q(ζ ), s = mζ q′(ζ ), and

Re
( t

s
+1
)
≥ mRe

(
ζ q′′(ζ )
q′(ζ )

+1
)
,

for z ∈ U, ζ ∈ ∂U\E(q) and m≥ n. In particular, Ψ1(Ω,q) := Ψ(Ω,q).

If ψ : C2×U→ C, then the admissibility condition (1.12) reduces to

ψ
(
q(ζ ),mζ q′(ζ );z

)
/∈Ω

for z ∈ U, ζ ∈ ∂U\E(q) and m≥ n.

The next theorem is the fundamental result in the theory of first and second-order

differential subordination.

Theorem 1.18. [35, Theorem 2.3b, p. 28] Let ψ ∈ Ψn(Ω,q) with q(0) = a. If p ∈

H [a,n] satisfies

ψ(p(z),zp′(z),z2 p′′(z);z) ∈Ω,

then p(z)≺ q(z).

In view of this theorem, the differential implication of (1.11) is equivalent to

{
ψ
(

p(z),zp′(z),z2 p′′(z);z
)

: z ∈ U
}
⊂Ω ⇒ p(z)≺ q(z),

by assuming that4 6=C is a simply connected domain containing the point a and there

is a conformal mapping q of U onto4 satisfying q(0) = a.

In the special case when Ω 6=C is also a simply connected domain, then Ω = h(U)
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where h is a conformal mapping of U onto Ω such that h(0)=ψ(a,0,0;0). In addition,

suppose that the function ψ
(

p(z),zp′(z),z2 p′′(z);z
)

is analytic in U. In this case, the

differential implication of (1.11) is rewritten as

ψ
(

p(z),zp′(z),z2 p′′(z);z
)
≺ h(z) ⇒ p(z)≺ q(z).

Denote this class by Ψn(h(U),q) or Ψn(h,q) and the following result is an immediate

consequence of Theorem 1.18.

Theorem 1.19. [35, Theorem 2.3c, p. 30] Let ψ ∈ Ψn(h,q) with q(0) = a. If p ∈

H [a,n], ψ(p(z),zp′(z),z2 p′′(z);z) is analytic in U, and

ψ
(

p(z),zp′(z),z2 p′′(z);z
)
≺ h(z),

then p(z)≺ q(z).

Let ψ : C3×U→ C and let h be univalent in U. If p is analytic in U and satisfies

the second-order differential subordination

ψ
(

p(z),zp′(z),z2 p′′(z);z
)
≺ h(z), (1.13)

then p is called a solution of the differential subordination. A univalent function q is

called a dominant of the solution of the differential subordination if p(z)≺ q(z) for all

p satisfying (1.13). A dominant q̃ satisfying q̃ ≺ q for all q of (1.13) is said to be the

best dominant of (1.13). The best dominant is unique up to a rotation of U. If p(z) ∈

H [a,n], then p(z) will be called an (a,n)-solution, q(z) an (a,n)-dominant, and q̃(z)

the best (a,n)-dominant.

The more general version of (1.13) is given by

ψ
(

p(z),zp′(z),z2 p′′(z);z
)
∈Ω, (1.14)
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where Ω⊂ C is a simply connected domain containing h(U). Even though

ψ
(

p(z),zp′(z),z2 p′′(z);z
)

may not be analytic in U, the condition in (1.14) shall also

be referred as a second-order differential subordination. The same definition of solu-

tion, dominant and best dominant as given above can be extended to this generalization.

1.5 Integral Operators

The study of operators plays an important role in geometric function theory. Over

the past few decades, many authors have employed various methods to study different

types of integral operator I mapping subsets of S into S . In this section, some inte-

gral operators which map certain subsets A into S are given. Noting that an integral

operator is sometimes called an integral transformation.

The study of operators can be traced back to 1915 due to Alexander [1]. He intro-

duced an operator A : A → A defined by

A[ f ](z) :=
∫ z

0

f (t)
t

dt,

and the operator is now known as Alexander operator. By the Alexander theorem, it is

evident that A is in CV if and only if zA′[ f ](z) = f (z) is in ST .

In 1960, Biernacki [13] conjectured that f ∈ S implies A ∈ S , but this turned out

to be wrong as subsequently, in 1963, Krzyz and Lewandowski [27] disproved it by

giving the following counterexample:

f (z) = ze(i−1)Log(1−iz) ≡ z
(1− iz)1−i , (1.15)

where Log denotes the principal branch of the logarithm. A function f ∈ A is called
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α-spirallike and to be univalent if and only if

Re
(

eiα z f ′(z)
f (z)

)
> 0, |z|< 1,

where a real number α lie in the interval −π/2 < α < π/2. Krzyz and Lewandowski

showed that f in (1.15) is (π/4)-spirallike in U, and hence in S , but that the corre-

sponding A is in fact infinite-valent in U (see [23, p. 149]).

Meanwhile, Libera [29] and Livingston [31] studied another operator L : A → A

given by

L[ f ](z) :=
2
z

∫ z

0
f (t) dt.

In 1969, Bernardi [11] generalized this operator by considering the more general op-

erator Lγ : A → A defined by

Lγ [ f ](z) :=
1+ γ

zγ

∫ z

0
f (t)tγ−1 dt, (γ = 1,2,3, . . .). (1.16)

Therefore the operator is called as the generalized Bernardi-Libera-Livingston linear

operator. By using differential subordination, Pascu [49] and Lewandowski et al. [28]

extended the result of the operator in (1.16) to complex values γ for which Re γ ≥ 0,

and obtain the following generalization.

Theorem 1.20. [28, 49] Let Lγ be defined by (1.16) and Re γ ≥ 0. Then

(i) Lγ [ST ]⊂ ST ,

(ii) Lγ [CV ]⊂ CV ,

(iii) Lγ [CCV ]⊂ CCV .

Several authors have investigated the integral operators that have similar properties

as the above result. For instance, Singh [54] in 1973 proved that if
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Iρ [ f ](z) :=
(

ρ + γ

zγ

∫ z

0
f ρ(t)tγ−1 dt

)1/ρ

, (ρ,γ = 1,2,3, · · ·),

then Iρ [ST ]⊂ ST . In 1978, Causey and White [15] showed that if

I[ f ,g](z) :=

(
γzρ

zγ

∫ z

0

(
f (t)
t

)α(g(t)
t

)δ

tγ−1 dt

)1/ρ

, (ρ,γ = 1,2,3, · · ·),

with α,δ ≥ 0, then I[ST ,CV ]⊂ ST .

The following integral operator investigated by Miller et al. [36] in 1978, has the

form

I[ f ](z) :=
(

ρ + γ

zγφ(z)

∫ z

0
f α(t)ϕ(t)tδ−1 dt

)1/ρ

,

where α,ρ,γ and δ are real numbers with certain constraints, φ and ϕ are analytic

and f is either starlike or convex. In a later paper in 1991, Miller and Mocanu [34]

considered the same integral operator I but for α,ρ,γ and δ that are complex numbers

and f is allowed to be in more general subsets of A . This integral operator becomes

the general type of integral operator which maps subsets of A into S with suitable

restriction on the parameters α,ρ,γ,δ and for f belonging to some classes of analytic

functions.

1.6 Scope of the Thesis

This thesis consists of five chapters which include three research problems followed

by references. The chapter wise organization of the thesis is as follows.

Chapter 1 presents some elementary concepts of the theory of univalent functions

and the theory of differential subordination. All the notations, fundamental definitions
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and known results required in this thesis are given in this chapter.

Chapter 2 deals with the linear second-order differential subordination of the form

A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z),

where A,B,C,D and h are complex-valued functions. An appropriate differential im-

plication involving the solutions p is obtained by determining the conditions on the

complex-valued functions A,B,C and D. These implications are described geometri-

cally corresponding to a few special cases of h. Under this framework, it gets more

computationally involved. Connections are also made with earlier known results.

Chapter 3 focuses on the applications of certain implication results of Chapter 2.

The inclusion properties for linear integral operators on certain subclasses of analytic

functions with fixed initial coefficient are investigated. These subclasses include func-

tions with positive real part, bounded functions and convex functions. The linear in-

tegral operator is derived by using some of the linear differential inequalities from the

integral inequalities of Chapter 2.

Chapter 4 studies the subordination of Schwarzian derivative. The differential im-

plication involving Schwarzian derivative is obtained by introducing an appropriate

class of admissible functions related to starlikeness or convexity. In particular, suffi-

cient conditions in term of Schwarzian derivative are obtained for functions f ∈ Ab to

be starlike or convex. Connections are made with previously known results.

In Chapter 5, which is the concluding one, the summary of the work done in this

thesis is presented and future prospects of the present work are given.
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CHAPTER 2

ADMISSIBLE CLASSES OF ANALYTIC FUNCTIONS WITH
FIXED INITIAL COEFFICIENT

2.1 Introduction

The subclass of H [0,1] consisting of normalized univalent functions f of the form

f (z) = z+a2z2 +a3z3 + · · · in U is denoted by S . The second coefficient of functions

in the class S plays an important role in the study of geometric properties of the class

S . For this reason, there has been continued interest in the investigations of analytic

functions with fixed initial coefficient. These include the works of [8, 9, 21, 25, 48]

and [56].

The recent work by Ali et al. [7] have extended the established theory of differen-

tial subordination pioneered by Miller and Mocanu [35] to functions with pre-assigned

second coefficient. These results subsequently have been applied by Ravichandran

and Nagpal in [52]. Motivated by these results, this chapter studies further analytic

functions with fixed initial coefficient on differential subordination by making modifi-

cations and improvements to the works developed in [35, 51].

Recall that H β [a,n] denote the class consisting of analytic functions p of the form

p(z) = a+β zn + pn+1zn+1 + · · · ,

with the fixed coefficient β is assumed to be a non-negative real number. The following

fundamental lemma for functions with fixed initial coefficient is required.

Lemma 2.1. [7, Lemma 2.2, p. 614] Let q ∈ Q with q(0) = a, and p ∈ H β [a,n]
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with p(z) 6≡ a. If there exists a point z0 ∈ U such that p(z0) ∈ q(∂U) and p({z :

|z|< |z0|})⊂ q(U), then

z0 p′(z0) = mζ0q′(ζ0)

and

Re
(

1+
z0 p′′(z0)

p′(z0)

)
≥ mRe

(
1+

ζ0q′′(ζ0)

q′(ζ0)

)
,

where q−1(p(z0)) = ζ0 = eiθ0 and

m≥ n+
|q′(0)|−β |z0|n

|q′(0)|+β |z0|n
.

Here Q is the set of functions q that are analytic and univalent in U\E(q), where

E(q) := {ζ ∈ ∂U : lim
z→ζ

q(z) = ∞},

and are such that q′(ζ ) 6= 0 for ζ ∈ ∂U\E(q). The subclass of Q for which q(0) = a is

denoted by Q(a).

Remark 2.1. When β = |q′(0)|, the above fundamental lemmas for functions with

initial coefficient reduces to the fundamental lemmas introduced by Miller and Mocanu

[35, Lemma 2.2d, p. 24]. Though even without this condition, the first two necessary

conditions in Lemma 2.1 are the same as the first two necessary conditions in Miller

and Mocanu [35, Lemma 2.2d, p. 24] but the class of analytic functions considered is

different.

Let ψ : C3×U→C be defined in a domain D and let h be univalent in U. Suppose

p ∈ H β [a,n],
(

p(z),zp′(z),z2 p′′(z);z
)
∈ D when z ∈ U, a nd p satisfies the second-

order differential subordination

ψ
(

p(z),zp′(z),z2 p′′(z);z
)
≺ h(z), (2.1)
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then p is called a β -solution of the second-order differential subordination (2.1). A

univalent function q is a β -dominant of the second-order differential subordination if

p≺ q for all p satisfying the second-order differential subordination (2.1).

The following definition is required in the present investigation.

Definition 2.1. (β -Admissibility Condition) [7, Definition 3.1, p. 616] Let Ω be a

domain in C, q ∈ Q, β ∈ R with β ≤ |q′(0)| and n be a positive integer. The class

Ψn,β (Ω,q) consists of functions ψ : C3×U→ C satisfying the following conditions:

(i) ψ(r,s, t;z) is continuous in a domain D⊂ C3×U,

(ii) (q(0),0,0;0) ∈ D and ψ(q(0),0,0;0) ∈Ω,

(iii) ψ(r0,s0, t0;z0) /∈Ω whenever (r0,s0, t0;z0) ∈ D, r0 = q(ζ ), s0 = mζ q′(ζ ), and

Re
(

t0
s0

+1
)
≥ mRe

(
ζ q′′(ζ )
q′(ζ )

+1
)
,

where |ζ |= 1, q(ζ ) is finite and

m≥ n+
|q′(0)|−β

|q′(0)|+β
.

The class Ψ1,β (Ω,q) is denoted by Ψβ (Ω,q).

If β = |q′(0)|, then the above concept of β -admissibility coincides with the usual ad-

missibility as Definition 1.5 in Section 1.4. In this case, Ψn(Ω,q) = Ψn,|q′(0)|(Ω,q).

Further, if β = |q′(0)| = 0, then it is clearly that Ψn+1(Ω,q) = Ψn,0(Ω,q). Note that

Ψn(Ω,q)⊂Ψn+1(Ω,q) [37, Remark 3, p. 159]. Evidently,

Ψn ≡Ψn,|q′(0)| ⊆Ψn,β ⊂Ψn,0 ≡Ψn+1.

In view of the above inclusions, it is assumed that 0 < β ≤ |q′(0)|.
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There are two interesting cases for q(U). First, when q(U) is the right half-plane

4= {w : Re w > 0}. In this case, the function

q(z) =
a+ āz
1− z

, z ∈ U, Re a > 0,

is univalent in U \ {1} and satisfies q(U) = 4, q(0) = a, q′(0) = a+ ā = 2Re a,

and q ∈ Q(a). Set Ψn,β (Ω,a) := Ψn,β (Ω,q), and when Ω =4, denote the class by

Ψn,β{a}. If a = 1, then the β -admissibility condition [7, Condition (3.4), p. 619] is as

follows:

ψ(iρ,σ ,µ + iν ;z) /∈Ω whenever (iρ,σ ,µ + iν ;z) ∈ D,

σ ≤−1
2

(
n+

2−β

2+β

)
(1+ρ

2), and σ +µ ≤ 0,
(2.2)

where ρ,σ ,µ,ν ∈ R, and n≥ 1.

The following result relates to the case of the right-half plane.

Lemma 2.2. [7, Theorem 3.4, p. 620] Let p∈H β [a,n] with Re a> 0, 0< β ≤ 2Re a.

(i) Let ψ ∈ Ψn,β (Ω,a) with associated domain D. If
(

p(z),zp′(z),z2 p′′(z);z
)
∈ D

and
ψ
(

p(z),zp′(z),z2 p′′(z);z
)
∈Ω, (z ∈ U),

then Re p(z)> 0.

(ii) Let ψ ∈Ψn,β{a} with associated domain D. If
(

p(z),zp′(z),z2 p′′(z);z
)
∈D and

Re ψ
(

p(z),zp′(z),z2 p′′(z);z
)
> 0, (z ∈ U),

then Re p(z)> 0.

The second case of interest is when q(U) is the disk4= {w : |w|< N}. Then the
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function

q(z) = N
Nz+a
N + āz

, z ∈ U, N > 0, |a|< N,

is univalent in U and satisfies q(U) =4, q(0) = a, q′(0) = (N2− |a|2)/N, and q ∈

Q(a). In this case, set Ψn,β (Ω,N,a) := Ψn,β (Ω,q) and when Ω =4, denote the class

by Ψn,β (N,a). If a = 0, then the β -admissibility condition [7, Condition (3.2), p. 618]

is as follows:

ψ(Neiθ ,Keiθ ,L;z) /∈Ω whenever (Neiθ ,Keiθ ,L;z) ∈ D,

K ≥
(

n+
N−β

N +β

)
N, and Re

(
Le−iθ

)
≥
(

n− 2β

N +β

)
K,

(2.3)

where θ ∈ R and n≥ 1.

The following result is for the particular case of the disk.

Lemma 2.3. [7, Theorem 3.3(i), p. 619] Let p ∈ H β [a,n] with N > 0, |a| < N, 0 <

β ≤ (N2−|a|2)/N.

(i) Let ψ ∈Ψn,β (Ω,N,a) with associated domain D. If
(

p(z),zp′(z),z2 p′′(z);z
)
∈D

and
ψ
(

p(z),zp′(z),z2 p′′(z);z
)
∈Ω, (z ∈ U),

then |p(z)|< N.

(ii) Let ψ ∈ Ψn,β (N,a) with associated domain D. If
(

p(z),zp′(z),z2 p′′(z);z
)
∈ D

and ∣∣ψ (p(z),zp′(z),z2 p′′(z);z
)∣∣< N, (z ∈ U),

then |p(z)|< N.
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2.2 Differential Subordination of Functions with Positive Real Part

Consider the linear second-order differential subordination

A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z) ∈Ω, (2.4)

where A,B,C,D are complex-valued functions and Ω is a domain in C.

First let Ω in (2.4) be the right half-plane.

Theorem 2.1. Let n be a positive integer, 0 < β ≤ 2, and A(z) = A≥ 0. Suppose that

the functions B,C,D : U→ C satisfy Re B(z)≥ A and

(Im C(z))2 ≤
[(

n+
2−β

2+β

)
(Re B(z)−A)

]
×
[(

n+
2−β

2+β

)
(Re B(z)−A)−2Re D(z)

]
.

(2.5)

If p ∈ H β [1,n] satisfies

Re
(
Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)

)
> 0,

then Re p(z)> 0.

Proof. Let ψ(r,s, t;z) = At + B(z)s +C(z)r + D(z), Ω be the right half-plane, and

q(z) = (1 + z)/(1− z). The object is to show that ψ ∈ Ψn,β{1}. The function ψ

is continuous in the domain D = C3×U, (1,0,0;0) ∈ D and Re ψ(1,0,0;0) =

Re (C(0)+D(0)) > 0 so that ψ(1,0,0;0) ∈ Ω. To verify that the β -admissibility

condition (2.2) is satisfied, it is enough to show that

Re ψ (iρ,σ ,µ + iν ;z)≤ 0

whenever σ ≤−
{
[n+(2−β )/(2+β )] (1+ρ2)

}
/2 and σ +µ ≤ 0, with ρ,σ ,µ,ν ∈

R and n≥ 1.
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Consider

ψ (iρ,σ ,µ + iν ;z) = A(µ + iν)+B(z)σ +C(z)iρ +D(z).

Then

Re ψ (iρ,σ ,µ + iν ;z)

= µA+σ Re B(z)−ρ Im C(z)+Re D(z)

≤−σA+σ Re B(z)−ρ Im C(z)+Re D(z)

≤−1
2

(
n+

2−β

2+β

)
(1+ρ

2)(Re B(z)−A)−ρ Im C(z)+Re D(z)

=−1
2

(
n+

2−β

2+β

)
ρ

2(Re B(z)−A)−ρ Im C(z)

− 1
2

[(
n+

2−β

2+β

)
(Re B(z)−A)−2Re D(z)

]

=−1
2

(
n+ 2−β

2+β

)2
ρ2(Re B(z)−A)2(

n+ 2−β

2+β

)
(Re B(z)−A)

−

(
n+ 2−β

2+β

)
(Re B(z)−A)ρ Im C(z)(

n+ 2−β

2+β

)
(Re B(z)−A)

− 1
2

(
n+ 2−β

2+β

)
(Re B(z)−A)

[(
n+ 2−β

2+β

)
(Re B(z)−A)−2Re D(z)

]
(

n+ 2−β

2+β

)
(Re B(z)−A)

.

Using the condition (2.5) to the latter inequality yields

Re ψ (iρ,σ ,µ + iν ;z)

≤−1
2

(
n+ 2−β

2+β

)2
ρ2(Re B(z)−A)2(

n+ 2−β

2+β

)
(Re B(z)−A)

−

(
n+ 2−β

2+β

)
(Re B(z)−A)ρ Im C(z)(

n+ 2−β

2+β

)
(Re B(z)−A)

− 1
2

(Im C(z))2(
n+ 2−β

2+β

)
(Re B(z)−A)

=−1
2

[(
n+ 2−β

2+β

)
ρ(Re B(z)−A)+ Im C(z)

]2(
n+ 2−β

2+β

)
(Re B(z)−A)

which is non-positive. Hence, ψ ∈ Ψn,β{1} and Lemma 2.2(ii) yield the required

result. This completes the proof of the theorem.
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When β = |q′(0)|, the fact that Ψn,β (Ω,q) = Ψn(Ω,q) reduces the class H β [a,n]

to the class H [a,n]. In the case β = |q′(0)| = 2, Theorem 2.1 leads to Theorem 4.1a

in Miller and Mocanu [35].

Corrollary 2.1. [35, Theorem 4.1a, p. 188] Let n be a positive integer and A(z) =

A≥ 0. Suppose that the functions B,C,D : U→ C satisfy Re B(z)≥ A and

(Im C(z))2 ≤ n(Re B(z)−A) ·Re (nB(z)−nA−2D(z)) .

If p ∈ H [1,n] satisfies

Re
(
Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)

)
> 0,

then Re p(z)> 0.

Applying Theorem 2.1 to the particular case A = 0 and D(z) = 0 yields the

following first-order result.

Corrollary 2.2. Let n be a positive integer, 0 < β ≤ 2, and let B,C be complex-valued

functions defined in U, with

| Im C(z)| ≤
(

n+
2−β

2+β

)
Re B(z). (2.6)

If p ∈ H β [1,n] satisfies

Re
(
B(z)zp′(z)+C(z)p(z)

)
> 0,

then Re p(z)> 0.

The following example illustrates the similar result of Corollary 2.2.

Example 2.1. Let B(z) = δ and C(z) = 1−δ with δ > 0. In this case, condition (2.6)

in Corollary 2.2 becomes

| Im (1−δ )| ≤
(

n+
2−β

2+β

)
Re δ .
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The result follows from Corollary 2.2 as follows:

If p ∈ Hβ [1,n], 0 < β ≤ 2, satisfies

Re
(
δ zp′(z)+(1−δ )p(z)

)
> 0,

then Re p(z)> 0.

2.3 Differential Subordination of Bounded Functions

In this section, let Ω in (2.4) be the disk of radius M > 0 centered at the origin and

first consider the case when A(z) = 0.

Theorem 2.2. Let M > 0, N > 0, 0 < β ≤ N, and n be a positive integer. Suppose

B,C,D : U→ C satisfy B(z) 6= 0,

(i) Re
(

C(z)
B(z)

)
≥−

(
n+ N−β

N+β

)
, and

(ii)
∣∣∣(n+ N−β

N+β

)
B(z)+C(z)

∣∣∣≥ 1
N (M+ |D(z)|).

If p ∈ H β [0,n] satisfies

∣∣B(z)zp′(z)+C(z)p(z)+D(z)
∣∣< M, (2.7)

then |p(z)|< N.

Proof. Note that inequality (2.7) requires that |D(0)| < M. For the case D(0) = 0,

inequality (2.7) can be written as

B(z)zp′(z)+C(z)p(z)+D(z)≺Mz ⇒ p(z)≺ Nz.

In [35, Lemma 2.2d, p. 24], if p is not subordinate to q, it is evident that there exist a

point z0 ∈ U, for which p({z : |z|< |z0|})⊂ q(U). By using the similar approach, this

theorem will be proved by making use of Lemma 2.1.
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Suppose that |p(z)| ≥ N and let

W (z) = B(z)zp′(z)+C(z)p(z)+D(z).

Applying Lemma 2.1 with q(z) = Nz, there exists a point z0 ∈ U, ζ0 ∈ ∂U and an

m ≥ n+(N− β |z0|n)/(N + β |z0|n) such that p(z0) = Nζ0 and z0 p′(z0) = mNζ0.

Thus

|W (z0)|= |B(z0)z0 p′(z0)+C(z0)p(z0)+D(z0)|

= |B(z0)mNζ0 + C(z0)Nζ0 +D(z0)|

= |N(mB(z0) + C(z0)) + ζ0D(z0)|

≥ N|mB(z0) + C(z0)| − |D(z0)|.

Consider the function g : [0,1]→ R given by

g(r) =
N−β rn

N +β rn , N > 0, β > 0, 0 < rn < 1,

then g is a continuous function of r and

g′(r) =
−2nNβ rn−1

(N +β rn)2 ≤ 0.

Therefore, g is a decreasing function of r and so

1 ≥ N−β rn

N +β rn ≥
N−β

N +β
.

since g(0)≥ g(r)≥ g(1). In this case,

m ≥ n+
N−β |z0|n

N +β |z0|n
≥ n+

N−β

N +β
.

Now condition (i) gives

0≤
(

n+
N−β

N +β

)
+Re

(
C(z)
B(z)

)
≤
∣∣∣∣(n+

N−β

N +β

)
+

C(z)
B(z)

∣∣∣∣≤ ∣∣∣∣m+
C(z)
B(z)

∣∣∣∣ ,
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where the latter inequality follows from m≥ n+(N−β )/(N +β ). Therefore,

|mB(z)+C(z)| ≥
∣∣∣∣(n+

N−β

N +β

)
B(z)+C(z)

∣∣∣∣ ,
which then by condition (ii) yields

|mB(z)+C(z)| ≥ 1
N
(M+ |D(z)|).

Thus

|W (z0)| ≥ N|mB(z0)+C(z0)|− |D(z0)| ≥M,

which contradicts inequality (2.7), and this yields the desired result.

For β = |q′(0)|= N, Theorem 2.2 reduces to Theorem 4.1b in [35].

Corrollary 2.3. [35, Theorem 4.1b, p. 190] Let M > 0, N > 0, and let n be a positive

integer. Suppose that the functions B,C,D : U→ C satisfy B(z) 6= 0,

(i) Re
(

C(z)
B(z)

)
≥−n, and

(ii) |nB(z)+C(z)| ≥ 1
N (M+ |D(z)|).

If p ∈ H [0,n] satisfies ∣∣B(z)zp′(z)+C(z)p(z)+D(z)
∣∣< M,

then |p(z)|< N.

In the case D(z)≡ 0, it follows from condition (ii) of Theorem 2.2 that

∣∣∣(n+ N−β

N+β

)
B(z)+C(z)

∣∣∣
|B(z)|

=

∣∣∣∣(n+
N−β

N +β

)
+

C(z)
B(z)

∣∣∣∣
≥
∣∣∣∣C(z)
B(z)

∣∣∣∣≥ ∣∣∣∣Im (
C(z)
B(z)

)∣∣∣∣≥ M
N|B(z)|

.
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This shows that the latter inequality does not depend on n. Therefore, Theorem 2.2 is

improved by replacing conditions (i) and (ii) with the following conditions:

Theorem 2.3. Let M > 0, N > 0, and suppose that B,C : U→C satisfy B(z) 6= 0, and∣∣∣∣Im (
C(z)
B(z)

)∣∣∣∣≥ M
N|B(z)|

. (2.8)

If p ∈ H β [0,1], 0 < β ≤ N, satisfies

∣∣B(z)zp′(z)+C(z)p(z)
∣∣< M,

then |p(z)|< N.

Proof. Following the proof of Theorem 2.2, suppose that |p(z)| ≥ N and let

W (z) = B(z)zp′(z)+C(z)p(z).

According to Lemma 2.1, there exists a point z0 ∈ U, ζ0 ∈ ∂U and an m≥ n+(N−

β )/(N +β ) so that

|W (z0)|= |mNζ0B(z0)+Nζ0C(z0)|= N|mB(z0) + C(z0)|.

Consequently,

|W (z0)|2−M2 =
[
N2|B(z0)|2m2 +2N2 Re (B(z0)C(z0))m+N2|C(z0)|2

]
−M2.

Condition (2.8) implies that the above quadratic expression in m has a non-positive

discriminant, i.e.,

b2−4ac =
(

2N2 Re (B(z0)C(z0))
)2
−4(N2|B(z0)|2)(N2|C(z0)|2−M2)

= 4N4
(

Re (B(z0)C(z0))
)2
−4N4|B(z0)|2|C(z0)|2 +4M2N2|B(z0)|2

= 4N4|B(z0)|4


(

Re (B(z0)C(z0))
)2

|B(z0)|4
− |C(z0)|2

|B(z0)|2
+

M2

N2|B(z0)|2


= 4N4|B(z0)|4

[∣∣∣∣Re
(

C(z0)

B(z0)

)∣∣∣∣2− |C(z0)|2

|B(z0)|2
+

M2

N2|B(z0)|2

]
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By squaring the condition (2.8) and applying it to the latter inequality yields

b2−4ac ≤ 4N4|B(z0)|4
[∣∣∣∣Re

(
C(z0)

B(z0)

)∣∣∣∣2− |C(z0)|2

|B(z0)|2
+

∣∣∣∣Im (
C(z0)

B(z0)

)∣∣∣∣2
]
.

When (|C(z0)|/|B(z0)|)2 = |Re (C(z0)/B(z0))|2 + | Im (C(z0)/B(z0))|2, the right side

of the above inequality becomes 0 and this shows that the discriminant is non-positive.

Since the coefficient of m2 is positive, it follows that |W (z0)|2−M2 ≥ 0 or |W (z0)| ≥

M, which contradicts the hypothesis. Therefore, |p(z)|< N.

For β = |q′(0)|= N, Theorem 2.3 easily reduces to Theorem 4.1c in [35].

Corrollary 2.4. [35, Theorem 4.1c, p. 192] Let M > 0, N > 0, and suppose that

B,C : U→ C satisfy B(z) 6= 0, and

∣∣∣∣Im (
C(z)
B(z)

)∣∣∣∣≥ M
N|B(z)|

.

If p ∈ H [0,1] and

|B(z)zp′(z)+C(z)p(z)|< M,

then |p(z)|< N.

By using inequality (2.8), a bound N for |p(z)| can be determined. This is estab-

lished by solving (2.8) for N, that is,

N ≥ M

|B(z)| ·
∣∣∣Im(C(z)

B(z)

)∣∣∣ ,
and taking the supremum of the expansion of the right over U. When the supremum is

finite yields the following corollary.

Corrollary 2.5. Let M > 0 and B,C : U→C with B(z) 6= 0. If p ∈H β [0,1], 0 < β ≤
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N, and

N = sup
|z|<1

 M

|B(z)| ·
∣∣∣Im(C(z)

B(z)

)∣∣∣
<+∞, (2.9)

then

|B(z)zp′(z)+C(z)p(z)|< M ⇒ |p(z)|< N.

The next example illustrates the similar result of Corollary 2.5.

Example 2.2. Let M = 1, B(z) = 1 and C(z) = 4i+2z, then

1
| Im(4i+2z)|

≤ 1
2
,

since

| Im(4i+2z)|= | Im(4i)+ Im(2z)| ≥ | Im(4i)|− | Im(2z)| ≥ 4−2 = 2.

In this case, condition (2.9) in Corollary 2.5 yields

N = sup
|z|<1

{
1

| Im(4i+2z)|

}
=

1
2
.

The result that follows from Corollary 2.5 is as follows:

If p ∈ Hβ [0,1], 0 < β ≤ 1/2, then

|zp′(z)+(4i+2z)p(z)|< 1 ⇒ |p(z)|< 1
2
.

Let Ω in (2.4) still be the disk of radius M > 0 centered at the origin but now

consider the case when A(z) 6= 0.

Theorem 2.4. Let M > 0, N > 0, 0 < β ≤ N, and n be a positive integer. Suppose

A,B,C,D : U→ C satisfy A(z) 6= 0,

(i) Re
(

B(z)
A(z)

)
≥−

(
n+ N−β

N+β

)
, and
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(ii) Re
(

A(z)(B(z)+C(z))
)
≥ |A(z)|N (M+ |D(z)|).

If p ∈ H β [0,n] and

∣∣A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)
∣∣< M, (2.10)

then |p(z)|< N.

Proof. Note that inequality (2.10) required that |D(0)|< M. Let

ψ(r,s, t;z) = A(z)t +B(z)s+C(z)r+D(z),

Ω = {w : |w|< M}, and q(z) = Nz. The object is to show that ψ ∈Ψn,β (Ω,N,0). The

function ψ is continuous in a domain D =C3×U, (0,0,0;0) ∈D and |ψ(0,0,0;0)|=

|D(0)|< M so that ψ(0,0,0;0) ∈Ω. The β -admissibility condition (2.3) is satisfied if

|ψ(z)| := |ψ(Neiθ ,Keiθ ,L)| ≥M

whenever K ≥ mN, and Re
(
Le−iθ) ≥ [n−2β/(N +β )]K, with m ≥ n + (N −

β )/(N +β ), n≥ 1, and θ ∈ R.

Now,

|ψ(z)|
|A(z)|

=
|A(z)L+B(z)Keiθ +C(z)Neiθ +D(z)|

|A(z)|

≥
∣∣∣∣Le−iθ +

B(z)
A(z)

K +
C(z)
A(z)

N
∣∣∣∣− ∣∣∣∣D(z)

A(z)
e−iθ

∣∣∣∣
≥ Re

(
Le−iθ

)
+Re

(
B(z)
A(z)

)
mN +Re

(
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣
≥
(

n− 2β

N +β

)
mN +Re

(
B(z)
A(z)

)
mN−Re

(
B(z)
A(z)

)
N

+Re
(

B(z)
A(z)

)
N +Re

(
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣
=

(
n− 2β

N +β

)
mN +Re

(
B(z)
A(z)

)
(m−1)N

+Re
(

B(z)
A(z)

+
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣ .
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By using condition (i) in the last inequality yields

|ψ(z)|
|A(z)|

≥
(

n− 2β

N +β

)
mN−

(
n+

N−β

N +β

)
(m−1)N

+Re
(

B(z)
A(z)

+
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣
= mnN−

(
2β

N +β

)
mN−mnN +nN−

(
N−β

N +β

)
mN

+

(
N−β

N +β

)
N +Re

(
B(z)
A(z)

+
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣
=−mN +

(
n+

N−β

N +β

)
N +Re

(
B(z)
A(z)

+
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣
≥−

(
n+

N−β

N +β

)
N +

(
n+

N−β

N +β

)
N +Re

(
B(z)
A(z)

+
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣ ,
where the latter inequality follows from m≥ n+(N−β )/(N +β ). This leads to

|ψ(z)|
|A(z)|

≥ Re
(

B(z)
A(z)

+
C(z)
A(z)

)
N−

∣∣∣∣D(z)
A(z)

∣∣∣∣ .

Thus

|A(z)|2 |ψ(z)|
|A(z)|

≥ |A(z)|2 Re
(

B(z)
A(z)

+
C(z)
A(z)

)
N−|A(z)|2

∣∣∣∣D(z)
A(z)

∣∣∣∣ .
It follows from condition (ii) that

|A(z)||ψ(z)| ≥ |A(z)|
N

(M+ |D(z)|)N−|A(z)||D(z)|= |A(z)|M,

which shows that |ψ(z)| ≥ M, and whence, ψ ∈ Ψn,β (Ω,N,0). Therefore, Lemma

2.3(i) deduces the required result.

For β = |q′(0)|= N, Theorem 2.4 reduces to Theorem 4.1d in [35].

Corrollary 2.6. [35, Theorem 4.1d, p. 193] Let M > 0, N > 0 and let n be a positive
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integer. Suppose that the functions A,B,C,D : U→ C satisfy A(z) 6= 0,

(i) Re
(

B(z)
A(z)

)
≥−n, and

(ii) Re
(

A(z)(B(z)+C(z))
)
≥ |A(z)|N (M+ |D(z)|).

If p ∈ H [0,n], and

∣∣A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)
∣∣< M,

then |p(z)|< N.

In this case, a bound N for |p(z)| can also be determined so that the inequality

(2.10) implies |p(z)| < N. By using a similar technique as in the previous case, solve

condition (ii) in Theorem 2.4 for N, that is,

N ≥ |A(z)|(M+ |D(z)|)

Re
(

A(z)(B(z)+C(z))
) ,

and take the supremum of the expansion of the right over U. When the supremum is

finite it leads to the following corollary.

Corrollary 2.7. Let M > 0, N > 0 and n be a positive integer. If p ∈ H β [0,n], 0 <

β ≤ N and that A,B,C,D : U→ C, with A(z) 6= 0 satisfy

Re
(

B(z)
A(z)

)
≥−

(
n+

N−β

N +β

)
, Re

(
A(z)(B(z)+C(z))

)
≥ 0,

and

N = sup
|z|<1

 |A(z)|(M+ |D(z)|)

Re
(

A(z)(B(z)+C(z))
)
<+∞,

then

∣∣A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)
∣∣< M ⇒ |p(z)|< N.
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2.4 Differential Subordination by Convex Functions

The inclusion (2.4) can also be written as

A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z).

Thus far, the function h considered is either the right-half plane, h(z) = (1+ z)/(1− z)

in Section 2.2 or a disk of radius M > 0 defined by h(z) = Mz in Section 2.3. Now, let

h be any convex univalent function of order α .

Theorem 2.5. Let n be a positive integer. For 0 ≤ α < 1, let h be a convex uni-

valent function of order α in U with h(0) = 0. Further, let 0 < β ≤ |h′(0)| and

k > 22(1−α)/|h′(0)|. Suppose that A ≥ 0 and that B,C, and D are analytic functions

in U satisfying

Re B(z)≥
[

1−α

(
n+
|h′(0)|−β

|h′(0)|+β

)]
A+

(
|h′(0)|+β

(n+1)|h′(0)|+(n−1)β

)
×
[

1
2τ(α)

|C(z)−1|− 1
2τ(α)

Re
(
C(z)−1

)
+ k|D(z)|

]
,

(2.11)

where

τ(α) :=


2α−1

2−22(1−α) , i f α 6= 1
2 ,

1
2ln2 , i f α = 1

2 .

(2.12)

If p ∈ H β [0,n] satisfies the differential subordination

Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z), (2.13)

then p(z)≺ h(z).

Proof. Note that subordination (2.13) implies that D(0)= 0. Let t(ρ0)= (1+ρ0)
2(1−α)/ρ0.

Since the function t is decreasing on (0,1), it follows that there is an 0 < ρ0 < 1 satis-

fying

(1+ρ0)
2(1−α)

ρ0
= k|h′(0)|,
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and

22(1−α) <
(1+ρ)2(1−α)

ρ
< k|h′(0)|

for ρ0 < ρ < 1.

Since h is convex of order α in U, it follows that hρ(z) := h(ρz) is convex of order

α in U for ρ0 < ρ < 1. Let pρ(z) := p(ρz) for ρ0 < ρ < 1. Evidently,

p′ρ(z) = ρ p′(ρz), and p′′ρ(z) = ρ
2 p′′(ρz). (2.14)

From the definition of subordination, the subordination (2.13) is equivalent to

Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z) = h(φ(z))

where φ is an analytic self-map of U with φ(0) = 0. A change of variable z with ρz

reduces the above equality to

Az2
ρ

2 p′′(ρz)+B(ρz)zρ p′(ρz)+C(ρz)p(ρz)+D(ρz) = h
(
φ(ρz)

)
.

In view of the fact that hρ(z) = h(ρz) and (2.14), it follows that

Az2 p′′ρ(z)+B(ρz)zp′ρ(z)+C(ρz)pρ(z)+D(ρz) = hρ

(
φ(z)

)
,

which leads to

Jρ(z) := Az2 p′′ρ(z)+B(ρz)zp′ρ(z)+C(ρz)pρ(z)+D(ρz)≺ hρ(z), (2.15)

for ρ0 < ρ < 1 and z ∈ U.

The purpose now is to show that pρ(z) ≺ hρ(z) for all ρ satisfying ρ0 < ρ < 1.

Assume that pρ is not subordinate to hρ for some ρ0 < ρ < 1. According by Lemma

2.1, there exist points z0 ∈ U, ζ0 ∈ ∂U, and an m ≥ n+(|h′(0)| −β |z0|n)/(|h′(0)|+

β |z0|n) such that
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pρ(z0) = hρ(ζ0), (2.16)

z0 p′ρ(z0) = mζ0h′ρ(ζ0), (2.17)

and

Re

(
1+

z0 p′′ρ(z0)

p′ρ(z0)

)
≥ mRe

(
1+

ζ0h′′ρ(ζ0)

h′ρ(ζ0)

)
.

In view of the fact that hρ is convex of order α , it is clearly that

Re

(
1+

z0 p′′ρ(z0)

p′ρ(z0)

)
≥ mα.

Using p′ρ from (2.17) yields

Re

(
1+

z0
2 p′′ρ(z0)

mζ0h′ρ(ζ0)

)
≥ mα,

and a straightforward computation shows that

Re

(
z0

2 p′′ρ(z0)

ζ0h′ρ(ζ0)

)
≥ m(mα−1). (2.18)

Now, consider the function g : [0,1]→ R given by

g(r) =
|h′(0)|−β rn

|h′(0)|+β rn , |h′(0)| ≥ β , β > 0, 0 < rn < 1,

then g is a continuous function of r and

g′(r) =
−2|h′(0)|nβ rn−1

(|h′(0)|+β rn)2 ≤ 0.

Therefore, g is a decreasing function of r and

1 ≥ |h
′(0)|−β rn

|h′(0)|+β rn ≥
|h′(0)|−β

|h′(0)|+β
.
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since g(0)≥ g(r)≥ g(1). In this case,

m ≥ n+
|h′(0)|−β |z0|n

|h′(0)|+β |z0|n
≥ n+

|h′(0)|−β

|h′(0)|+β
.

Let

λ =
Jρ(z0)−hρ(ζ0)

ζ0h′ρ(ζ0)
,

or equivalently,

Jρ(z0) = hρ(ζ0)+λζ0h′ρ(ζ0), (2.19)

then the definition of Jρ in (2.15) readily gives

λ =

(
Az0

2 p′′ρ(z0)+B(ρz0)z0 p′ρ(z0)+C(ρz0)pρ(z0)+D(ρz0)
)
−hρ(ζ0)

ζ0h′ρ(ζ0)
.

It follows from (2.16) that

λ =

(
Az0

2 p′′ρ(z0)+B(ρz0)z0 p′ρ(z0)+C(ρz0)hρ(ζ0)+D(ρz0)
)
−hρ(ζ0)

ζ0h′ρ(ζ0)

=
Az0

2 p′′ρ(z0)

ζ0h′ρ(ζ0)
+

B(ρz0)z0 p′ρ(z0)

ζ0h′ρ(ζ0)
+

(C(ρz0)−1)hρ(ζ0)

ζ0h′ρ(ζ0)
+

D(ρz0)

ζ0h′ρ(ζ0)
.

Thus

Re λ ≥ ARe

(
z0

2 p′′ρ(z0)

ζ0h′ρ(ζ0)

)
+Re

(
B(ρz0)

z0 p′ρ(z0)

ζ0h′ρ(ζ0)

)

+Re

(
(C(ρz0)−1)hρ(ζ0)

ζ0h′ρ(ζ0)

)
−

∣∣∣∣∣ D(ρz0)

ζ0h′ρ(ζ0)

∣∣∣∣∣ .
(2.20)

To get the desired contradiction, it is enough to show that Re λ > 0. According to

Theorem 1.15 (see Section 1.2), when hρ is convex of order α , then

Re

(
ζ0h′ρ(ζ0)

hρ(ζ0)

)
≥ τ(α), (ζ0 ∈ U),
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where τ(α) is given by equation (2.12). Equivalently,

∣∣∣∣∣ hρ(ζ0)

ζ0h′ρ(ζ0)
− 1

2τ(α)

∣∣∣∣∣≤ 1
2τ(α)

or

∣∣∣∣∣2τ(α)hρ(ζ0)

ζ0h′ρ(ζ0)
−1

∣∣∣∣∣≤ 1.

If R,S ∈ C and |S−1| ≤ 1, then

Re RS = Re R+Re R(S−1)≥ Re R−|R|.

Choosing R =C(ρz0)−1 and S =
(
2τ(α)hρ(ζ0)

)
/ζ0h′ρ(ζ0) in the above inequality

yields

Re

(
(C(ρz0)−1)

2τ(α)hρ(ζ0)

ζ0h′ρ(ζ0)

)
≥ Re (C(ρz0)−1)−|C(ρz0)−1|,

that is,

Re

(
(C(ρz0)−1)hρ(ζ0)

ζ0h′ρ(ζ0)

)
≥ 1

2τ(α)

[
Re (C(ρz0)−1)−|C(ρz0)−1|

]
. (2.21)

Since h is convex of order α with h(0) = 0, then a well-known distortion theorem

for convex functions of order α (see Theorem 1.16) applied to h′(z)/h′(0) yields

|h′(z)| ≥ |h′(0)|
(1+ρ)2(1−α)

, (|z|= ρ < 1).

Replacing z by ρζ0 in the above inequality gives

|h′(ρζ0)| ≥
|h′(0)|

(1+ρ)2(1−α)
,

which leads to ∣∣∣∣∣h′ρ(ζ0)

ρ

∣∣∣∣∣≥ |h′(0)|
(1+ρ)2(1−α)

because ρh′(ρζ0) = h′ρ(ζ0). Since |ζ0|= 1, it follows that
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|ζ0h′ρ(ζ0)| ≥
ρ|h′(0)|

(1+ρ)2(1−α)
. (2.22)

In view of (2.17),(2.18),(2.21) and (2.22), it follows from (2.20) that

Re λ ≥ m(mα−1)A+mRe B(ρz0)+
1

2τ(α)

[
Re (C(ρz0)−1)−|C(ρz0)−1|

]
− (1+ρ)2(1−α)

ρ|h′(0)|
|D(ρz0)|

Substituting m ≥ n+(|h′(0)| −β )/(|h′(0)|+β ) and k ≥ (1+ρ)2(1−α)/(ρ|h′(0)|)

in the above inequality yields

Re λ ≥
(

n+
|h′(0)|−β

|h′(0)|+β

)[(
n+
|h′(0)|−β

|h′(0)|+β

)
α−1

]
A

+

(
n+
|h′(0)|−β

|h′(0)|+β

)
Re B(ρz0)

+
1

2τ(α)

[
Re (C(ρz0)−1)−|C(ρz0)−1|

]
− k|D(ρz0)| ≥ 0

provided condition (2.11) holds. Note that Re λ ≥ 0 is equivalent to |argλ | < π/2.

This together with the fact that ζ0h′ρ(ζ0) is the outward normal to the boundary of the

convex domain hρ(U) at hρ(ζ0), it follows from (2.19) that Jρ(z0) 6∈ hρ(U) for some ρ

satisfying ρ0 < ρ < 1. This contradicts the assumption (2.15) and hence, pρ(z)≺ hρ(z)

for all ρ satisfying ρ0 < ρ < 1. Therefore, by letting ρ → 1− yields the desired result,

which completes the proof of this theorem.

Note that various earlier published results are special cases of Theorem 2.5 for

suitable choices of the parameters α,β and n, and the functions A,B,C and D. First,

the case β = |h′(0)| corresponds to the following result of Ravichandran [51].

Corrollary 2.8. [51, Theorem 2.1, p. 4] Let h be a convex univalent function of order
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α, 0≤ α < 1, in U with h(0) = 0 and let A≥ 0. Suppose that k > 22(1−α)/|h′(0)|, and

that B,C, and D are analytic function in U and satisfy

nRe B(z)≥ n(1−αn)A+
1

2τ(α)

(
|C(z)−1|−Re

(
C(z)−1

))
+ k|D(z)|,

where τ(α) is as given by equation (2.12). If p ∈ H [0,n] satisfies

Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z),

then p(z)≺ h(z).

Further, the case where α = 0 and n = 1 leads to the following result of Miller and

Mocanu [35].

Corrollary 2.9. [35, Theorem 4.1e, p. 195] Let h be a convex in U with h(0) = 0 and

let A≥ 0. Suppose that k > 4/|h′(0)|, and that B,C, and D are analytic in U and satisfy

Re B(z)≥ A+ |C(z)−1|−Re
(
C(z)−1

)
+ k|D(z)|,

If p ∈ H [0,1] satisfies

Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z),

then p(z)≺ h(z).

Next, in the case A = 0, D(z)≡ 0, and β = |h′(0)|, Theorem 2.5 yields a result of

Ravichandran [51].

Corrollary 2.10. [51, Corollary 2.4, p. 6] Let h be a convex univalent function of

order α, 0≤ α < 1, in U, with h(0) = 0. Let B and C are analytic on U satisfying

Re B(z)≥ 1
2nτ(α)

(
|C(z)−1|−Re

(
C(z)−1

))

where τ(α) is as given by equation (2.12). If p ∈ H [0,n] satisfies
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B(z)zp′(z)+C(z)p(z)≺ h(z),

then p(z)≺ h(z).

Finally, for the particular case where A = 0, B(z) = 1, D(z) ≡ 0, α = 0, n = 1,

and β = |h′(0)|, Theorem 2.5 reduces to the following result of Ravichandran [51].

Corrollary 2.11. [51, Corollary 2.5, p. 6] Let h be a convex univalent function in U

with h(0) = 0. Let C be analytic functions on U satisfying

Re C(z)> |C(z)−1|.

If p ∈ H [0,1] satisfies

zp′(z)+C(z)p(z)≺ h(z),

then p(z)≺ h(z).

For the case C(z) ≡ 1, the condition h(0) = p(0) = 0 can be replaced by h(0) =

p(0) = a and the proof of Theorem 2.5 still holds. In this case, the following result is

stated without proof.

Theorem 2.6. Let n be a positive integer. For 0≤α < 1, let h be convex univalent func-

tion of order α in U with h(0)= a. Further, let 0< β ≤ |h′(0)| and k > 22(1−α)/|h′(0)|.

Suppose that A≥ 0 and that B and D are analytic in U with D(0) = 0 satisfying

Re B(z)≥
[

1−
(

n+
|h′(0)|−β

|h′(0)|+β

)
α

]
A

+

(
|h′(0)|+β

(n+1)|h′(0)|+(n−1)β

)
k|D(z)|.

If p ∈ H β [a,n], satisfies the differential subordination

Az2 p′′(z)+B(z)zp′(z)+ p(z)+D(z)≺ h(z),
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then p(z)≺ h(z).

For the case β = |h′(0)|, Theorem 2.6 reduces to the following result of Ravichan-

dran [51].

Corrollary 2.12. [51, Corollary 2.3, p. 6] Let h be a convex univalent function of

order α, 0 ≤ α < 1, in U and let A ≥ 0. Suppose that k > 22(1−α)/|h′(0)| and that B

and D are analytic in U with D(0) = 0 and

nRe B(z)≥ n(1−αn)A+ k|D(z)|

for all z ∈ U. If p ∈ H [a,n], h(0) = p(0) satisfies the differential subordination

Az2 p′′(z)+B(z)zp′(z)+ p(z)+D(z)≺ h(z),

then p(z)≺ h(z).

For the particular case where α = 0, n = 1 and β = |h′(0)|, Theorem 2.6 coincides

to the following result of Miller and Mocanu [35].

Corrollary 2.13. [35, Theorem 4.1f, p. 198] Let h be a convex in U and A ≥ 0.

Suppose that B and D are analytic in U with D(0) = 0 satisfying

Re B(z)≥ A+4
|D(z)|
|h′(0)|

.

If p ∈ H [h(0),1] satisfies

Az2 p′′(z)+B(z)zp′(z)+ p(z)+D(z)≺ h(z),

then p(z)≺ h(z).
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CHAPTER 3

LINEAR INTEGRAL OPERATORS ON ANALYTIC FUNCTIONS
WITH FIXED INITIAL COEFFICIENT

3.1 Introduction

During the last several years many authors have employed various methods to study

different types of integral operators I mapping subsets of A into A . Some interest-

ing development of integral operator involving subordination were considered by Ali

et al. [4, 5, 6] and others [14, 16, 30, 38, 58]. Motivated by these results, this chapter

studies the inclusion properties for linear integral operators on certain subclasses of an-

alytic functions with fixed initial coefficient by using the methodology of differential

subordination.

In the present investigation, several new results of the linear integral operators that

preserve certain subclasses of analytic functions with fixed initial coefficient are ob-

tained. These subclasses include the function with positive real part, bounded func-

tions, and convex functions. The linear integral operator is shown to map certain sub-

classes of analytic functions with fixed initial coefficient into itself. To ensure these

inclusion properties hold, conditions on the linear integral operators are determined by

satisfying certain equivalent conditions from the previous chapter. The methodology

used rests on differential subordination by making modifications and improvements to

the works developed in [35].

Denote by Dn the class consisting of nonzero analytic functions given by
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Dn := {ϕ ∈H [1,n] : ϕ(z) 6= 0 for z ∈ U}

with D1 := D . This class of nonzero analytic functions will be used frequently in the

remainder of this chapter.

3.2 Integral Operators Preserving Functions with Positive Real Part

Denote by P n the class of analytic functions with positive real part given by

Pn := { f ∈H [1,n] : Re f (z)> 0 for z ∈ U}.

For β > 0, consider the subclass P n,β of P n, consisting of all analytic functions in U

having positive real part:

Pn,β := { f ∈Hβ [1,n] : f (z) = 1+β zn + fn+1zn+1 + · · · , Re f (z)> 0}.

Also, consider the subclass Dn,−β of Dn, consisting of all nonzero analytic functions

in U given by

Dn,−β := {ϕ ∈H−β [1,n] : ϕ(z) = 1−β zn +ϕn+1zn+1 + · · · , ϕ(z) 6= 0}.

A result from Chapter 2 which is Corollary 2.2 is required.

Lemma 3.1. (Corollary 2.2) Let n be a positive integer, 0 < β ≤ 2, and let B,C be

complex-valued functions defined in U, with

| Im C(z)| ≤
(

n+
2−β

2+β

)
Re B(z). (3.1)

If p ∈ H β [1,n] satisfies

Re
(
B(z)zp′(z)+C(z)p(z)

)
> 0, (3.2)

then Re p(z)> 0.

By appealing to Lemma 3.1, the following result describes the integral operator I
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that satisfies the condition

Re f (z)> 0 ⇒ Re I[ f ](z)> 0,

where I is defined on the class P ⊂ H .

Theorem 3.1. Let n be a positive integer, 0< β ≤ 2, and γ 6= 0 in C with Re γ >−n.

Suppose ϕ,φ ∈ Dn,−β , and satisfy

∣∣∣∣Im(γφ(z)+ zφ ′(z)
γϕ(z)

)∣∣∣∣≤ (n+
2−β

2+β

)
Re
(

φ(z)
γϕ(z)

)
. (3.3)

Let I : P n,β → P n,β be defined by

I[ f ](z) =
γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt. (3.4)

Then I[Pn,β ]⊂ Pn,β .

Proof. Write the integral operator in (3.4) as

F(z) = I[ f ](z) =
γ

zγφ(z)

∫ z

0
g(t)tγ−1 dt :=

G(z)
φ(z)

,

where g(t) = f (t)ϕ(t) = 1+∑
∞
m=n+1 amtm. It is evident that

G(z) =
γ

zγ

∫ z

0
g(t)tγ−1 dt

=
γ

zγ

∫ z

0

(
1+

∞

∑
m=n+1

amtm

)
tγ−1 dt

=
γ

zγ

∫ z

0
tγ−1 dt +

γ

zγ

(
∞

∑
m=n+1

am

∫ z

0
tm+γ−1 dt

)

=
γ

zγ

(
zγ

γ

)
+

γ

zγ

∞

∑
m=n+1

am

m+ γ
zm+γ

= 1+
∞

∑
m=n+1

γam

m+ γ
zm

lies in H [1,n+1]. Thus
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F(z) =
G(z)
φ(z)

=

(
1+

∞

∑
m=n+1

γam

m+ γ
zm

)(
1+

∞

∑
m=n

φmzm
)−1

=

(
1+

∞

∑
m=n+1

γam

m+ γ
zm

)(
1−

∞

∑
m=n

φmzm +

(
∞

∑
m=n

φmzm
)2

−·· ·

)

=

(
1+

γan+1

n+1+ γ
zn+1 +

γan+2

n+2+ γ
zn+2 +

γan+3

n+3+ γ
zn+3 + · · ·

)
×
[

1−
(
−β zn +φn+1zn+1 +φn+2zn+2 + · · ·

)
+
(
β

2z2n−2βφn+1z2n+1 +(φ 2
n+1−2βφn+2)z2n+2 + · · ·

)
−·· ·

]
= 1+β zn +

(
γan+1

n+1+ γ
−φn+1

)
zn+1 + · · · ,

so that F is well-defined and F ∈ P n,β .

By letting

B(z) =
φ(z)

γϕ(z)
, and C(z) =

γφ(z)+ zφ ′(z)
γϕ(z)

, (3.5)

it is clear that condition (3.3) is equivalent to condition (3.1) in Lemma 3.1. Differen-

tiating F with respect to z yields

F ′(z) =
∂

∂ z

[
γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt

]
=

γ

zγφ(z)

[
∂

∂ z

∫ z

0
f (t)ϕ(t)tγ−1 dt

]
+

[∫ z

0
f (t)ϕ(t)tγ−1 dt

][
∂

∂ z

(
γ

zγφ(z)

)]
=

γ

zγφ(z)

[
f (z)ϕ(t)zγ−1]

+

[∫ z

0
f (t)ϕ(t)tγ−1 dt

][−γ
(
γzγ−1φ(z)+ zγφ ′(z)

)(
zγφ(z)

)2

]

=
γ f (z)ϕ(z)

zφ(z)
−
(

γφ(z)+ zφ ′(z)
zφ(z)

)
γ

zγφ(z)

∫ z

0
f (t)ϕ(z)tγ−1 dt,
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that is,

F ′(z) =
γ f (z)ϕ(z)

zφ(z)
−
(

γφ(z)+ zφ ′(z)
zφ(z)

)
F(z).

Multiplying by zφ(z)/γϕ(z) to the above equality gives

(
φ(z)

γϕ(z)

)
zF ′(z) = f (z)−

(
γφ(z)+ zφ ′(z)

γϕ(z)

)
F(z),

which in turn implies

(
φ(z)

γϕ(z)

)
zF ′(z)+

(
γφ(z)+ zφ ′(z)

γϕ(z)

)
F(z) = f (z).

In view of (3.5), it is evident that

B(z)zF ′(z)+C(z)F(z) = f (z).

Since

Re
(
B(z)zF ′(z)+C(z)F(z)

)
= Re f (z)> 0,

by Lemma 3.1, Re F(z)> 0 or Re I[ f ](z)> 0, and hence, I[Pn,β ]⊂ Pn,β .

Taking β = 2 in Theorem 3.1, the following result of Miller and Mocanu [35] is

readily obtained.

Corrollary 3.1. [35, Theorem 4.2a, p. 202] Let γ 6= 0 in C with Re γ ≥ 0, and n be

a positive integer. Let ϕ,φ ∈Dn and suppose that

∣∣∣∣Im(γφ(z)+ zφ ′(z)
γϕ(z)

)∣∣∣∣≤ nRe
(

φ(z)
γϕ(z)

)
.

If the integral operator I be defined by

I[ f ](z) =
γ

zγφ(z)

∫ z

0
f (t)tγ−1

ϕ(t) dt,

then I[Pn]⊂ Pn.
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3.3 Integral Operators Preserving Bounded Functions

In this section, denote by HB(M)[0,1] the class of analytic functions f satisfying

| f (z)|< M for M > 0 given by

HB(M)[0,1] := { f ∈H [0,1] : | f (z)|< M, M > 0, for z ∈ U}.

For β > 0, consider the subclass HBβ (M)[0,1] of HB(M)[0,1], consisting of all

analytic functions f in U for which | f (z)|< M, M > 0 :

HBβ (M)[0,1] := { f ∈Hβ [0,1] : f (z) = β z+ f2z2 + f3z3 + · · · , | f (z)|< M}.

The following lemma which is the Corollary 2.5 in Chapter 2 is required later.

Lemma 3.2. (Corollary 2.5) Let M > 0 and B,C : U→ C with B(z) 6= 0. If p ∈

H β [0,1], 0 < β ≤ N, and

N = sup
|z|<1

 M

|B(z)| ·
∣∣∣Im(C(z)

B(z)

)∣∣∣
<+∞, (3.6)

then

|B(z)zp′(z)+C(z)p(z)|< M ⇒ |p(z)|< N. (3.7)

By using Lemma 3.2 and following the same approach as the previous section leads

to the following result describing the linear integral operator I defined on the subclass

HB(M)⊂ H satisfying

| f (z)|< M ⇒ |I[ f ](z)|< N

with the bound N > 0 dependent on I and M > 0.

Theorem 3.2. Let γ ∈ C with Re γ > −1. Further, let ϕ,φ ∈ D and let f ∈

HBβ (M)[0,1], M > 0. Suppose 0 < β ≤ N and
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N = sup
|z|<1

 M|(1+ γ)ϕ(z)|

|φ(z)|
∣∣∣Im (

γ + zφ ′(z)
φ(z)

)∣∣∣
<+∞. (3.8)

Let I : HBβ (M)[0,1]→HBβ (N)[0,1] be defined by

I[ f ](z) =
1+ γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt. (3.9)

Then I[HBβ (M)[0,1]]⊂HBβ (N)[0,1].

Proof. Express the integral operator in (3.9) as

F(z) = I[ f ](z) =
1+ γ

zγφ(z)

∫ z

0
h(t)tγ−1dt :=

H(z)
φ(z)

,

where h(t) = f (t)ϕ(t) = ∑
∞
m=1 amtm. It follows that

H(z) =
1+ γ

zγ

∫ z

0
h(t)tγ−1 dt

=
1+ γ

zγ

∫ z

0

(
∞

∑
m=1

amtm

)
tγ−1 dt

=
1+ γ

zγ

∞

∑
m=1

am

∫ z

0
tm+γ−1 dt

=
1+ γ

zγ

∞

∑
m=1

am

m+ γ
zm+γ

= (1+ γ)
∞

∑
m=1

am

m+ γ
zm

lies in H [0,1]. Thus

F(z) =
H(z)
φ(z)

=

(
(1+ γ)

∞

∑
m=1

am

m+ γ
zm

)(
1+

∞

∑
n=1

φnzn

)−1

=

(
(1+ γ)

∞

∑
m=1

am

m+ γ
zm

)1−
∞

∑
n=1

φnzn +

(
∞

∑
n=1

φnzn

)2

−·· ·
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=

(
(1+ γ)β

1+ γ
z+

(1+ γ)a2

2+ γ
z2 +

(1+ γ)a3

3+ γ
z3 + · · ·

)
×
[

1−
(

φ1z+φ2z2 +φ3z3 + · · ·
)

+

(
φ

2
1 z2 +2φ1φ2z3 +(2φ1φ3 +φ

2
2 )z

4 + · · ·
)
−·· ·

]
= β z+

(
(1+ γ)a2

2+ γ
−βφ1

)
z2

+

(
(1+ γ)a3

3+ γ
− (1+ γ)a2φ1

2+ γ
+β (φ 2

1 −φ2)

)
z3 + · · · .

The restriction on the terms γ,φ ,ϕ and f implies that F is well-defined and F ∈

HBβ (N)[0,1].

By taking

B(z) =
φ(z)

(1+ γ)ϕ(z)
, and C(z) =

γφ(z)+ zφ ′(z)
(1+ γ)ϕ(z)

, (3.10)

it is clear that condition (3.8) is equivalent to condition (3.6) in Lemma 3.2. Differen-

tiating F with respect to z yields

F(z) =
∂

∂ z

[
1+ γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt

]
=

1+ γ

zγφ(z)

[
∂

∂ z

∫ z

0
f (t)ϕ(t)tγ−1 dt

]
+

[∫ z

0
f (t)ϕ(t)tγ−1 dt

][
∂

∂ z

(
1+ γ

zγφ(z)

)]
=

1+ γ

zγφ(z)

[
f (z)ϕ(z)zγ−1]

+

[∫ z

0
f (t)ϕ(t)tγ−1 dt

][−(1+ γ)
(
γzγ−1φ(z)+ zγφ ′(z)

)(
zγφ(z)

)2

]

=
(1+ γ) f (z)ϕ(z)

zφ(z)
−
(

γφ(z)+ zφ ′(z)
zφ(z)

)
1+ γ

zγφ(z)

∫ z

0
f (t)ϕ(t)tγ−1 dt,

that is,

F ′(z) =
(1+ γ) f (z)ϕ(z)

zφ(z)
−
(

γφ(z)+ zφ ′(z)
zφ(z)

)
F(z).
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Multiplying by zφ(z)/[(1+ γ)ϕ(z)] to the last equality gives

[
φ(z)

(1+ γ)ϕ(z)

]
zF ′(z) = f (z)−

(
γφ(z)+ zφ ′(z)
(1+ γ)ϕ(z)

)
F(z),

which upon simplification leads to

(
φ(z)

(1+ γ)ϕ(z)

)
zF ′(z)+

(
γφ(z)+ zφ ′(z)
(1+ γ)ϕ(z)

)
F(z) = f (z).

In view of (3.10), it is evident that

B(z)zF ′(z)+C(z)F(z) = f (z).

Since

|B(z)zF ′(z)+C(z)F(z)|= | f (z)|< M,

by Lemma 3.2, then |F(z)| < N, or |I[ f ](z)| < N, and hence, I[HBβ (M)[0,1]] ⊂

HBβ (N)[0,1].

The following example illustrates the similar form of Theorem 3.2.

Example 3.1. Let γ = x+ iy satisfies y > 0 and 0 < 1+ x < |λ | < y. For ϕ(z) =

φ(z) = eλ z, consider

I(z) =
1+ γ

zγeλ z

∫ z

0
f (t)eλ ttγ−1 dt,

and

N = sup
|z|<1

{
M|1+ γ||eλ z|
|eλ z| |Im (γ +λ z)|

}
= sup
|z|<1

{
M|1+ γ|
|Im (γ +λ z)|

}
=

M|1+ γ|
y−|λ |

< ∞.

Hence,

| f (z)| ≤M ⇒
∣∣∣∣ 1
zγeλ z

∫ z

0
f (t)eλ ttγ−1 dt

∣∣∣∣≤ M
y−|λ |

.
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3.4 Integral Operators Preserving Convex Functions

In the present section, denote by HC [0,1] the class of analytic functions f which are

convex in U given by

HC [0,1] := { f ∈H [0,1] : f is convex for z ∈ U}.

For β > 0, consider the subclass HC β [0,1] of HC [0,1], consisting of all analytic func-

tions f in U which are convex:

HC β [0,1] := { f ∈Hβ [0,1] : f (z) = β z+ f2z2 + f3z3 + · · · , f is convex}.

To prove the main result in this section, the following lemma which is Theorem 2.5 in

Chapter 2 is required.

Lemma 3.3. (Theorem 2.5) Let n be a positive integer. For 0 ≤ α < 1, let h be a

convex univalent function of order α in U with h(0) = 0. Further, let 0 < β ≤ |h′(0)|

and k > 22(1−α)/|h′(0)|. Suppose that A≥ 0 and B,C, and D are analytic functions in

U satisfying

Re B(z)≥
[

1−α

(
n+
|h′(0)|−β

|h′(0)|+β

)]
A+

(
|h′(0)|+β

(n+1)|h′(0)|+(n−1)β

)
×
[

1
2τ(α)

|C(z)−1|− 1
2τ(α)

Re
(
C(z)−1

)
+ k|D(z)|

]
,

(3.11)

where

τ(α) :=


2α−1

2−22(1−α) , i f α 6= 1
2 ,

1
2ln2 , i f α = 1

2 .

If p ∈ H β [0,n] satisfies the differential subordination

Az2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z), (3.12)

then p(z)≺ h(z).
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The following result is obtained by appealing to Lemma 3.3.

Theorem 3.3. Let γ ∈C with Re γ >−1. Further, let ϕ,φ ∈D and let f ∈HC β [0,1].

Let the integral operator I be defined by

I[ f ](z) =
1+ γ

zγφ(z)

∫ z

0
f (t)tγ−1

ϕ(t) dt. (3.13)

Let h be a convex univalent function in U, with h(0) = 0 and 0 < β ≤ |h′(0)|. Suppose

w ∈ H [0,2] and B,C are analytic functions in U satisfying

Re B(z)≥
(
|h′(0)|+β

2|h′(0)|

)(
|C(z)−1|−Re (C(z)−1)+4|w(z)|

)
, (3.14)

where

B(z) =
φ(z)

(1+ γ)ϕ(z)
and C(z) =

γφ(z)+ zφ ′(z)
(1+ γ)ϕ(z)

. (3.15)

Let Iw : HC β [0,1]→HC β [0,1] be defined by

Iw[ f ](z) := I[ f + f ′(0)w](z), (3.16)

then I[HC β [0,1]]⊂HC β [0,1].

Proof. Write the integral operator in (3.16) as

F(z) = Iw[ f ](z) = I[ f + f ′(0)w](z) =
1+ γ

zγφ(z)

∫ z

0
q(t)tγ−1 dt :=

Q(z)
φ(z)

,

where the function q(t) = [ f (t)+ f ′(0)w(t)]ϕ(t) = ∑
∞
m=1 amtm. Evidently,

Q(z) =
1+ γ

zγ

∫ z

0
q(t)tγ−1 dt

=
1+ γ

zγ

∫ z

0

(
∞

∑
m=1

amtm

)
tγ−1 dt

=
1+ γ

zγ

∞

∑
m=1

am

∫ z

0
tm+γ−1 dt
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=
1+ γ

zγ

∞

∑
m=1

am

m+ γ
zm+γ

= (1+ γ)
∞

∑
m=1

am

m+ γ
zm

lies in H [0,1]. Thus

F(z) =
Q(z)
φ(z)

=

(
(1+ γ)

∞

∑
m=1

am

m+ γ
zm

)(
1+

∞

∑
n=1

φnzn

)−1

=

(
(1+ γ)

∞

∑
m=1

am

m+ γ
zm

)1−
∞

∑
n=1

φnzn +

(
∞

∑
n=1

φnzn

)2

−·· ·


=

(
(1+ γ)β

1+ γ
z+

(1+ γ)a2

2+ γ
z2 +

(1+ γ)a3

3+ γ
z3 + · · ·

)
×
[

1−
(

φ1z+φ2z2 +φ3z3 + · · ·
)

+

(
φ

2
1 z2 +2φ1φ2z3 +(2φ1φ3 +φ

2
2 )z

4 + · · ·
)
−·· ·

]
=

(
β z+

(1+ γ)a2

2+ γ
z2 +

(1+ γ)a3

3+ γ
z3 + · · ·

)
×
(

1−φ1z+(φ 2
1 −φ2)z2 +(2φ1φ2−φ3)z3 + · · ·

)
= β z+

(
(1+ γ)a2

2+ γ
−βφ1

)
z2

+

(
(1+ γ)a3

3+ γ
− (1+ γ)a2φ1

2+ γ
+β (φ 2

1 −φ2)

)
z3 + · · · .

The restriction on the terms γ,ϕ,φ and w imply that F is well-defined and F ∈HC β [0,1].

Differentiating F with respect to z yields

F ′(z) =
∂

∂ z

[
1+ γ

zγφ(z)

∫ z

0
[ f (t)+ f ′(0)w(t)]ϕ(t)tγ−1 dt

]
=

1+ γ

zγφ(z)

[
∂

∂ z

∫ z

0
[ f (t)+ f ′(0)w(t)]ϕ(t)tγ−1 dt

]

65



+

[∫ z

0
[ f (t)+ f ′(0)w(t)]ϕ(t)tγ−1 dt

][
∂

∂ z

(
1+ γ

zγφ(z)

)]
=

1+ γ

zγφ(z)

[
[ f (z)+ f ′(0)w(z)]ϕ(t)zγ−1]

+

[∫ z

0
[ f (t)+ f ′(0)w(t)]ϕ(t)tγ−1 dt

][−(1+ γ)
(
γzγ−1φ(z)+ zγφ ′(z)

)(
zγφ(z)

)2

]

=
(1+ γ)[ f (z)+ f ′(0)w(z)]ϕ(z)

zφ(z)

−
(

γφ(z)+ zφ ′(z)
zφ(z)

)
1+ γ

zγφ(z)

∫ z

0
[ f (t)+ f ′(0)w(t)]ϕ(t)tγ−1 dt,

that is,

F ′(z) =
(1+ γ)[ f (z)+ f ′(0)w(z)]ϕ(z)

zφ(z)
−
(

γφ(z)+ zφ ′(z)
zφ(z)

)
F(z).

Multiplying by zφ(z)/[(1+ γ)ϕ(z)] to the above equality gives

(
φ(z)

(1+ γ)ϕ(z)

)
zF ′(z) = f (z)+ f ′(0)w(z)−

(
γφ(z)+ zφ ′(z)
(1+ γ)ϕ(z)

)
F(z),

which on simplification gives

(
φ(z)

(1+ γ)ϕ(z)

)
zF ′(z)+

(
γφ(z)+ zφ ′(z)
(1+ γ)ϕ(z)

)
F(z)− f ′(0)w(z) = f (z).

In view of (3.15) and let D(z) =− f ′(0)w(z), it is evident that

B(z)zF ′(z)+C(z)F(z)+D(z) = f (z).

The aim to prove this theorem is to make use of Lemma 3.3. Let

B(z)zF ′(z)+C(z)F(z)+D(z) = f (z)≺ h(z).

Since f (z)≺ h(z), it implies that
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| f ′(0)| ≤ |h′(0)| or
1

| f ′(0)|
≥ 1
|h′(z)|

.

The above fact shows that

4|w(z)|= 4
|D(z)|
| f ′(0)|

≥ 4
|D(z)|
|h′(0)|

.

since D(z) = − f ′(0)w(z). It is clear that condition (3.14) implies condition (3.11)

in Lemma 3.3 when A = 0, α = 0 and n = 1. By Lemma 3.3, F(z) ≺ h(z), or

Iw[ f ](z)≺ h(z), and hence I[HC β [0,1]]⊂HC β [0,1].
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CHAPTER 4

SUBORDINATION OF THE SCHWARZIAN DERIVATIVE

4.1 Introduction

Recall that A be the subclass of H [0,1] consisting of normalized analytic functions

f of the form f (z) = z+ a2z2 + a3z3 + · · · in U. The subclasses of A consisting of

starlike and convex functions in U are denoted by ST and CV , respectively.

The Schwarzian derivative of a locally univalent analytic function f in U is defined

by

{ f ,z} :=
(

f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

.

In 1978, Miller and Mocanu [33] found conditions on φ : C3×U→ C such that

Re
{

φ

(
z f ′(z)
f (z)

,1+
z f ′′(z)
f ′(z)

,z2{ f ,z};z
)}

> 0

implies f ∈ ST . As applications, if f ∈ A satisfies either

Re
{

α

(
z f ′(z)
f (z)

)
+δ

(
1+

z f ′′(z)
f ′(z)

)
+

(
z f ′(z)
f (z)

)
z2{ f ,z}

}
> 0, (α,δ ∈ R),

or

Re
{

z f ′(z)
f (z)

+

(
1+

z f ′′(z)
f ′(z)

+ z2{ f ,z}
)}

>−1
2
,

then f ∈ ST . Later, Owa and Obradovic [46, Corollary 2, p. 490] proved that if f ∈

A and

Re
{

z f ′(z)
f (z)

(
1+

z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

)}
>−1

2
,

then f ∈ ST .
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Miller and Mocanu [33] also found conditions on φ : C2×U→ C such that

Re
{

φ

(
1+

z f ′′(z)
f ′(z)

,z2{ f ,z};z
)}

> 0

implies f ∈ CV . They proved that f ∈ CV if f ∈ A satisfies one of the following

conditions:

(i) Re
{(

1+ z f ′′(z)
f ′(z)

)
+αz2{ f ,z}

}
> 0, (Re α ≥ 0),

(ii) Re
{(

1+ z f ′′(z)
f ′(z)

)2
+ z2{ f ,z}

}
> 0,

(iii) Re
{(

1+ z f ′′(z)
f ′(z)

)
ez2{ f ,z}

}
> 0.

In fact, Owa and Obradovic [46, Corollary 3, p. 490] also proved that f ∈ CV if f ∈

A and

Re

{
z2{ f ,z}+ 1

2

(
1+

z f ′′(z)
f ′(z)

)2
}

> 0.

This chapter deals with the class H β [a,n] of all analytic functions p of the form

p(z) = a+β zn + pn+1zn+1 + · · · ,

where the fixed coefficient β is a non-negative real number. Denote by An,b the class

of all normalized analytic functions f ∈ An of the form

f (z) = z+bzn+1 +an+2zn+2 + · · · ,

where b is a fixed non-negative real number. Write A1,b = Ab.

Recently, Miller and Mocanu [33] obtained sufficient conditions for starlikeness

and convexity of functions f ∈ A in term of the Schwarzian derivative. Ali et al. [3]

have used the result of Miller and Mocanu [33] and obtained sufficient conditions for

functions f ∈ A involving the Schwarzian derivative to satisfy either
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q1 ≺
z f ′(z)
f (z)

≺ q2 or q1 ≺ 1+
z f ′′(z)
f ′(z)

≺ q2,

where q1 is analytic and q2 is analytic univalent in U.

In this chapter, subordination is investigated on a class of β -admissible functions.

The aim of this chapter is to obtain sufficient conditions in term of Schwarzian deriva-

tive to ensure functions f ∈ Ab to satisfy either

z f ′(z)
f (z)

≺ q(z) or 1+
z f ′′(z)
f ′(z)

≺ q(z),

where q is analytic univalent in U. In Section 4.2, a class of β -admissible functions re-

lated to starlikeness satisfying the subordination implication involving the Schwarzian

derivative is determined. Sufficient conditions in terms of the Schwarzian derivative

that implies starlikeness of functions f ∈ Ab are obtained. These results extend earlier

works by [3, 35].

Section 4.3 is devoted to finding sufficient conditions in terms of the Schwarzian

derivative that implies convexity of functions f ∈ Ab. At the beginning of this section,

a class of β -admissible functions related to convexity satisfying the subordination im-

plication involving the Schwarzian derivative is obtained. These results also extend

earlier works by [3, 35].

Again, the following results obtained by Ali et al. [7] are required in the sequel.

Let Q denote the set of functions q that are analytic and univalent on U\E(q), where

E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) = ∞},

and are such that q′(ζ ) 6= 0 for ζ ∈ ∂U\E(q). The subclass of Q for which q(0) = a

is denoted by Q(a) with Q(1) := Q1.

70



Definition 4.1. [7, Definition 3.1, p. 616] Let Ω be a domain in C, q ∈ Q, β ∈ R

with 0 < β ≤ |q′(0)| and let n be a positive integer. The class Ψn,β (Ω,q) consists of

β -admissible functions ψ : C3×U→ C satisfying the β -admissibility condition

ψ(r,s, t;z) 6∈Ω

whenever

r = q(ζ ), s = mζ q′(ζ ), and

Re
( t

s
+1
)
≥ mRe

(
ζ q′′(ζ )
q′(ζ )

+1
)
,

where |ζ |= 1, q(ζ ) is finite and

m≥ n+
|q′(0)|−β

|q′(0)|+β
.

The class Ψ1,β (Ω,q) is denoted by Ψβ (Ω,q).

Lemma 4.1. [7, Theorem 3.1, p. 617] Let q(0) = a, ψ ∈Ψn,β (Ω,q) with associated

domain D, and β ∈R with 0< β ≤ |q′(0)|. Let f ∈H β [a,n]. If (p(z),zp′(z)z2 p′′(z);z)∈

D and

ψ(p(z),zp′(z),z2 p′′(z);z) ∈Ω, (z ∈ U),

then p(z)≺ q(z).

4.2 Starlikeness and Subordination of The Schwarzian Derivative

The following class of β -admissible functions related to starlikeness is introduced.

Definition 4.2. (β -Admissibility Condition) Let Ω be a domain in C, q ∈ Q1, β ∈ R

with 0 < β ≤ |q′(0)|. The class ΦS,β (Ω,q) consists of β -admissible functions φ :

C3×U→ C satisfying the β -admissibility condition

φ(u,v,w;z) 6∈Ω
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whenever

u = q(ζ ), v = q(ζ )+
mζ q′(ζ )

q(ζ )
, (q(ζ ) 6= 0),

Re
(

2w+u2−1+3(v−u)2

2(v−u)

)
≥ mRe

(
ζ q′′(ζ )
q′(ζ )

+1
)
,

(4.1)

z ∈ U, ζ ∈ ∂U\E(q) and

m≥ 1+
|q′(0)|−β

|q′(0)|+β
=

2|q′(0)|
|q′(0)|+β

. (4.2)

The following is the main result in this section that make use of Definition 4.2.

Theorem 4.1. Let f ∈ Ab, 0 < β = b ≤ |q′(0)|, with f (z) f ′(z)/z 6= 0. If φ ∈

ΦS,β (Ω,q) satisfies

{
φ

(
z f ′(z)
f (z)

,1+
z f ′′(z)
f ′(z)

,z2{ f ,z}
)

: z ∈ U
}
⊂Ω, (4.3)

then

z f ′(z)
f (z)

≺ q(z).

Proof. Define the function p : U→ C by

p(z) =
z f ′(z)
f (z)

. (4.4)

Since f ∈ Ab, a simple calculation shows that

p(z) =
z(1+∑

∞
k=2 kakzk−1)

z+∑
∞
k=2 akzk

=
1+∑

∞
k=2 kakzk−1

1+∑
∞
k=2 akzk−1

=

(
1+

∞

∑
k=2

kakzk−1

)(
1−

∞

∑
k=2

akzk−1 +

(
∞

∑
k=2

akzk−1
)2

+ · · ·

)
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=
(
1+2bz+3a3z2 +4a4z3 + · · ·

)
×
[
1−
(
bz+a3z2 +a4z3 + · · ·

)
+
(
b2z2 +2ba3z3 +(2ba4 +a2

3)z
4 + · · ·

)
+ · · ·

]
=
(
1+2bz+3a3z2 +4a4z3 + · · ·

)(
1−bz+(b2−a3)z2 + · · ·

)
= 1+bz+(2a3−b2)z2 + · · ·

is analytic in U. Thus, f ∈H β [1,1] with β = b and p(0)= 1. By taking the logarithmic

differentiation on (4.4) gives

zp′(z)
p(z)

=
z f ′′(z)
f ′(z)

+1− p(z),

and so
z f ′′(z)
f ′(z)

+1 = p(z)+
zp′(z)
p(z)

. (4.5)

It is evident from the definition of { f ,z} that

z2{ f ,z}= z2

[(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
]
.

By using the value of f ′′(z)/ f ′(z) from (4.5), the above equality is equivalent to

z2{ f ,z}= z2

[(
p(z)−1

z
+

p′(z)
p(z)

)′
− 1

2

(
p(z)−1

z
+

p′(z)
p(z)

)2
]
.

A further computation shows that

z2{ f ,z}= z2

(
p′(z)

z
− p(z)−1

z2 +
p′′(z)
p(z)

−
(

p′(z)
p(z)

)2
)

− z2

2

(
p2(z)−2p(z)+1

z2 +
2p′(z)

z
− 2p′(z)

zp(z)
+

(
p′(z)
p(z)

)2
)

= zp′(z)− p(z)+1+
z2 p′′(z)

p(z)
−
(

zp′(z)
p(z)

)2
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− p2(z)
2

+ p(z)− 1
2
− zp′(z)+

zp′(z)
p(z)

− 1
2

(
zp′(z)
p(z)

)2

=
zp′(z)+ z2 p′′(z)

p(z)
− 3

2

(
zp′(z)
p(z)

)2

+
1− p2(z)

2
. (4.6)

Define the transformation from C3 to C3 by

u = r,

v = r+
s
r
,

w =
s+ t

r
− 3s2

2r2 +
1− r2

2
,

(4.7)

and the function ψ : C3×U→ C by

ψ(r,s, t;z) = φ(u,v,w;z)

= φ

(
r , r+

s
r
,

s+ t
r
− 3s2

2r2 +
1− r2

2
; z
)
.

(4.8)

It follows from (4.4), (4.5), (4.6) and (4.8) that

ψ(p(z),zp′(z),z2 p′′(z);z)

= φ

(
p(z) , p(z)+

zp′(z)
p(z)

,
zp′(z)+ z2 p′′(z)

p(z)
− 3

2

(
zp′(z)
p(z)

)2

+
1− p2(z)

2
; z

)

= φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1 , z2{ f ,z} ; z
)
.

Hence, the condition (4.3) becomes

ψ(p(z),zp′(z),z2 p′′(z);z) ∈Ω.

In view of (4.7), it follows that

s = u(v−u),
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and

t =
2uw−2u(v−u)−u(1−u2)+3u(v−u)2

2
.

This leads to

1+
t
s
=

2w+u2−1+3(v−u)2

2(v−u)
.

Thus the β -admissibility condition for φ ∈ ΦS,β (Ω,q) in Definition 4.2 is equivalent

to the β -admissibility condition for ψ as given in Definition 4.1. Hence, ψ ∈Ψβ (Ω,q)

and by virtue of Lemma 4.1,

p(z)≺ q(z) or
z f ′(z)
f (z)

≺ q(z).

In the special situation when Ω 6=C is a simply connected domain, then Ω = h(U)

for some conformal mapping h of U onto Ω. In this case, the class ΦS,β (h(U),q) is

written as ΦS,β (h,q) and the following result is an immediate consequence of Theorem

4.1.

Theorem 4.2. Let 0< β = b≤ |q′(0)| and φ ∈ΦS,β (h,q). If f ∈Ab with f (z) f ′(z)/z 6=

0 and satisfying

φ

(
z f ′(z)
f (z)

,1+
z f ′′(z)
f ′(z)

,z2{ f ,z};z
)
≺ h(z),

then
z f ′(z)
f (z)

≺ q(z).

As an application, it is of interest to investigate Theorem 4.1 to the case of q(U)

being the right half-plane q(U) = {w : Re w > 0} :=4.

Theorem 4.3. Let Ω be a set in C and let the function φ : C3×U→ C satisfying the
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β -admissibility condition

φ(iρ, iτ,ξ + iη ;z) 6∈Ω,

for all z ∈ U, ρ,τ,ξ ,η ∈ R, and 0 < β ≤ 2 with

ρτ ≥ 1
2+β

(
2+(4+β )ρ2) , and ρη ≥ 0. (4.9)

If f ∈ Ab, 0≤ b≤ 2, with f (z) f ′(z)/z 6= 0 and to satisfy

φ

(
z f ′(z)
f (z)

,1+
z f ′′(z)
f ′(z)

,z2{ f ,z};z
)
∈Ω,

then f ∈ ST b.

Proof. Let the function

q(z) =
1+ z
1− z

,

then q(0) = 1 and q ∈ Q1. For ζ ∈ ∂U\{1}, it follows that

q(ζ ) =
1+ζ

1−ζ
= iρ, ζ q′(ζ ) =

2ζ

(1−ζ )2 =−(1+ρ2)

2
,

and

ζ
2q′′(ζ ) =

4ζ 2

(1−ζ )3 =
(1+ρ2)(1− iρ)

2
.

Note that

Re
(

ζ q′′(ζ )
q′(ζ )

+1
)
= Re

(
2ζ

1−ζ
+1
)
= Re (iρ) = 0 (4.10)

where ζ = (iρ−1)/(iρ +1).

In this case, the β -admissibility condition for the class ΦS,β (Ω,(1+ z)/(1− z)) in

Definition 4.2 is described by
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u = q(ζ ) := iρ,

v = q(ζ )+
mζ q′(ζ )

q(ζ )
= i
(

ρ +
m(1+ρ2)

2ρ

)
:= iτ,

w := ξ + iη ,

(4.11)

with

Re
(

2w+u2−1+3(v−u)2

2(v−u)

)
= Re

(
2(ξ + iη)+(iρ)2−1+3(iτ− iρ)2

2(iτ− iρ)

)
= Re

([
2ξ +2iη−ρ

2−1+3
(

im(1+ρ2)

2ρ

)2
]
× ρ

im(1+ρ2)

)

= Re
(

2iρξ −2ρη− iρ3− iρ
−m(1+ρ2)

+
3im(1+ρ2)

4ρ

)
=

2ρη

m(1+ρ2)
. (4.12)

In view of (4.10) and (4.12), the condition (4.1) in Definition 4.2 reduces to

2ρη

m(1+ρ2)
≥ 0,

which yields the desired condition ρη ≥ 0 as asserted in (4.9).

By using the value of τ in (4.11) leads to

2ρτ = 2ρ
2 +m(1+ρ

2).

Applying (4.2) in Definition 4.2 with |q′(0)|= 2 to the above equality yields

2ρτ ≥ 2ρ
2 +

4(1+ρ2)

2+β
,

that is,

ρτ ≥ 1
2+β

(
2+(4+β )ρ2) ,
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which is the estimate (4.9). Thus the β -admissibility condition for functions in ΦS,β (Ω,(1+

z)/(1− z)) is equivalent to φ(iρ, iτ,ξ + iη ;z) /∈ Ω, whence φ ∈ ΦS,β (Ω,(1+ z)/(1−

z)). It follows from Theorem 4.1 that f ∈ ST b.

For β = 2, Definition 4.2 reduces to Definition 2.1 in Ali et al. [3, p. 5]. In this

case, the coefficient b satisfying the sharp bound for second coefficient when f ∈ ST ,

that is, |b|= |a2| ≤ 2 and Theorem 4.3 coincides with the sufficient condition for f ∈

A obtained by Ali et al. [3].

Corrollary 4.1. [3, Theorem 2.8, p. 9] Let Ω be a set in C and let the function

φ : C3×U→ C satisfying the admissibility condition

φ(iρ, iτ,ξ + iη ;z) 6∈Ω,

for z ∈ U, and for all real ρ,τ,ξ and η with

ρτ ≥ 1
2
(
1+3ρ

2) , ρη ≥ 0.

Let f ∈ A with f (z) f ′(z)/z 6= 0. If

φ

(
z f ′(z)
f (z)

,1+
z f ′′(z)
f ′(z)

,z2{ f ,z};z
)
∈Ω, z ∈ U,

then f ∈ ST .

When h(z) = (1+ z)/(1− z), then h(U) = q(U) or Ω = 4 and the class of

β -admissible functions ΦS,β (h(U),4) is denoted by ΦS,β (4). Consequently, the

following corollary is obtained by Theorem 4.3.

Corrollary 4.2. Let φ ∈ΦS,β (4) and satisfies

Re {φ(iρ, iτ,ζ + iη ;z)} ≤ 0,
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when ρ,τ,ζ ,η ∈R and 0 < β ≤ 2 with ρτ ≥ [2+(4+β )ρ2]/(2+β ) and ρη ≥ 0.

If f ∈ Ab, 0≤ b≤ 2, with f (z) f ′(z)/z 6= 0 and satisfies

Re
{

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1, z2{ f ,z};z
)}

> 0, z ∈ U,

then f ∈ ST b.

In the case β = 2, the coefficient b will follow the same argument as before and

Corollary 4.2 reduces to the following corollary.

Corrollary 4.3. [35, Theorem 4.6a, p. 244] Let φ : C3→ C satisfy

Re
{

φ(iρ, iτ,ζ + iη ;z)
}
≤ 0,

when ρ,τ,ζ ,η ∈ R, ρτ ≥ (1+3ρ2)/2, and ρη ≥ 0. Let f ∈ A with f (z) f ′(z)/z 6= 0.

If

Re
{

φ

(
z f ′(z)
f (z)

,
z f ′′(z)
f ′(z)

+1, z2{ f ,z};z
)}

> 0, z ∈ U,

then f ∈ ST .

4.3 Convexity and Subordination of The Schwarzian Derivative

The following class of β -admissible functions related to convexity is introduced.

Definition 4.3. (β -Admissibility Condition) Let Ω be a domain in C, q∈Q1∩H [1,1],

β ∈ R with 0 < β ≤ |q′(0)|. The class ΦC,β (Ω,q) consists of β -admissible functions

φ : C2×U→ C satisfying the β -admissibility condition

φ(u,v;z) 6∈Ω

whenever
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u = q(ζ ), v = mζ q′(ζ )+
1−q2(ζ )

2
,

for z ∈ U, ζ ∈ ∂U\E(q) and

m≥ 1+
|q′(0)|−β

|q′(0)|+β
=

2|q′(0)|
|q′(0)|+β

. (4.13)

The following is the main result in this section that make use of Definition 4.3.

Theorem 4.4. Let f ∈ Ab, 0 < β = 2b ≤ |q′(0)|, with f ′(z) 6= 0. If φ ∈ ΦC,β (Ω,q)

satisfies {
φ

(
1+

z f ′′(z)
f ′(z)

,z2{ f ,z}
)

: z ∈ U
}
⊂Ω, (4.14)

then

1+
z f ′′(z)
f ′(z)

≺ q(z).

Proof. Define the function p : U→ C by

p(z) = 1+
z f ′′(z)
f ′(z)

. (4.15)

Since f ∈ Ab, a simple calculation shows that

p(z) = 1+
z
(
∑

∞
k=2 k(k−1)akzk−2)

1+∑
∞
k=2 kakzk−1

= 1+

(
∞

∑
k=2

k(k−1)akzk−1

)(
1−

∞

∑
k=2

kakzk−1 +

(
∞

∑
k=2

kakzk−1
)2

+ · · ·

)

= 1+
(
2bz+6a3z2 +12a4z3 + · · ·

)(
1−
(
2bz+3a3z2 +4a4z3 + · · ·

)
+
(
4b2z2 +12ba3z3 +(16ba4 +9a2

3)z
4 + · · ·

)
+ · · ·

)
= 1+

(
2bz+6a3z2 +12a4z3 + · · ·

)(
1−2bz+(4b2−3a3)z2 +(4a4 +12ba3)z3 + · · ·

)
= 1+2bz+(6a3−4b2)z2 +(8b3−18ba3 +12a4)z3 + · · ·
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is analytic in U. Thus f ∈ H β [1,1] where β = 2b and p(0) = 1.

It is evident from the definition of { f ,z} that

z2{ f ,z}= z2

[(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2
]
.

By substituting f ′′(z)/ f ′(z) from (4.15) in the above equation leads to

z2{ f ,z}= z2

[(
p(z)−1

z

)′
− 1

2

(
p(z)−1

z

)2
]
.

A routine calculation shows that

z2{ f ,z}= z2
(

zp′(z)− p(z)+1
z2

)
− z2

2

(
p2(z)−2p(z)+1

z2

)
= zp′(z)− p(z)+1− p2(z)

2
+ p(z)− 1

2

= zp′(z)+
1− p2(z)

2
. (4.16)

Define the transformation from C2 to C2 by

u = r,

v = s+
1− r2

2
.

If the function ψ : C2×U→ C is defined by

ψ(r,s;z) = φ(u , v ; z)

= φ

(
r , s+

1− r2

2
; z
)
,

(4.17)

then equations (4.15), (4.16) and (4.17) give
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ψ(p(z),zp′(z);z) = φ

(
p(z) , zp′(z)+

1− p2(z)
2

; z
)

= φ

(
1+

z f ′′(z)
f ′(z)

,z2{ f ,z} ; z
)
.

Hence, condition (4.14) becomes

ψ
(

p(z),zp′(z);z
)
∈Ω.

Thus the β -admissibility condition for φ ∈ ΦC,β (Ω,q) in Definition 4.3 is equivalent

to the β -admissibility condition for ψ as given in Definition 4.1. Hence, ψ ∈Ψβ (Ω,q)

and by virtue of Lemma 4.1,

p(z)≺ q(z) or 1+
z f ′′(z)
f ′(z)

≺ q(z).

In the case Ω= h(U) for some conformal mapping h of U onto Ω 6=C, the class

ΦC,β (h(U),q) is simply denoted by ΦC,β (h,q). The following result is established,

which is stated without proof as a consequence of Theorem 4.4.

Theorem 4.5. Let 0< β = 2b≤ |q′(0)| and φ ∈ΦC,β (h,q). If f ∈Ab with f ′(z) 6= 0

satisfies

φ

(
1+

z f ′′(z)
f ′(z)

,z2{ f ,z};z
)
≺ h(z),

then

1+
z f ′′(z)
f ′(z)

≺ q(z).

An interesting application of Theorem 4.4 is in the case of q(U) being the right

half-plane q(U) = {w : Re w > 0} :=4.
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Theorem 4.6. Let Ω be a set in C and let the function φ : C2×U→ C satisfying the

β -admissibility condition

φ(iρ,η ;z) 6∈Ω,

for all z ∈ U, ρ,η ∈ R, and 0 < β ≤ 2 with

η ≤ β −2
2(2+β )

(1+ρ
2). (4.18)

If f ∈ Ab, 0≤ b≤ 1, with f ′(z) 6= 0 and to satisfy

φ

(
1+

z f ′′(z)
f ′(z)

,z2{ f ,z};z
)
∈Ω, z ∈ U,

then f ∈ CV b.

Proof. Let the function

q(z) =
1+ z
1− z

,

then q(0) = 1 and q ∈ Q1∩ H [1,1]. For ζ ∈ ∂U\{1}, it follows that

q(ζ ) =
1+ζ

1−ζ
= iρ,

and

ζ q′(ζ ) =
2ζ

(1−ζ )2 =−(1+ρ2)

2
,

where ζ = (iρ−1)/(iρ +1).

In this case, the β -admissibility condition for the class of β -admissible functions

ΦC,β (Ω,(1+ z)/(1− z)) in Definition 4.3 is described by

u = q(ζ ) := iρ,

v = mζ q′(ζ )+
1−q2(ζ )

2
=

(1−m)(1+ρ2)

2
:= η .

(4.19)
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The value of η in (4.19) gives

2η =−m(1+ρ
2)+1+ρ

2.

By applying (4.13) in Definition 4.3 with |q′(0)|= 2 to the above equality yields

2η ≤− 4
2+β

(1+ρ
2)+1+ρ

2,

that is,

η ≤ β −2
2(2+β )

(1+ρ
2),

which is the estimate (4.18). Thus the β -admissibility condition for functions in

ΦC,β (Ω,(1+ z)/(1− z)) is equivalent to φ(iρ,η ;z) /∈ Ω, whence φ ∈ ΦC,β (Ω,(1+

z)/(1− z)). It follows from Theorem 4.4 that f ∈ CV b.

For β = 2, Definition 4.3 leads to Definition 4.1 in Ali et al. [3, p. 12]. In this case,

the coefficient b satisfied the sharp bound for second coefficient when f ∈ CV , that is,

|b| = |a2| ≤ 1 and Theorem 4.6 yields the sufficient condition for f ∈ A obtained by

Ali et al. [3].

Corrollary 4.4. [3, Theorem 4.7, p. 15] Let Ω be a set in C. Let the function

φ : C2×U→ C satisfying the admissibility condition

φ(iρ,η ;z) 6∈Ω,

for z ∈ U and for all real ρ and η with η ≤ 0. Let f ∈ A with f ′(z) 6= 0. If

φ

(
1+

z f ′′(z)
f ′(z)

,z2{ f ,z};z
)
∈Ω, z ∈ U,

then f ∈ CV .
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If h(z) = (1+ z)/(1− z), then clearly h(U) = 4 = q(U) and the class of β -

admissible functions ΦC,β (h(U),4) is simply written as ΦC,β (4) and Theorem 4.6

yields the following corollary.

Corrollary 4.5. Let φ ∈ΦC,β (4) and satisfy

Re
{

φ(iρ,η ;z)
}
≤ 0,

when ρ,η ∈ R and 0 < β ≤ 2, with η ≤ [(β − 2)(1+ ρ2)]/[2(2+ β )]. If f ∈

Ab, 0≤ b≤ 1 with f ′(z) 6= 0 and satisfies

Re
{

φ

(
1+

z f ′′(z)
f ′(z)

, z2{ f ,z};z
)}

> 0, z ∈ U,

then f ∈ CV b.

In the case β = 2, the coefficient b will follow the same argument as before and

Corollary 4.5 reduces to the following corollary.

Corrollary 4.6. [35, Theorem 4.6b, p. 246] Let φ : C2→ C satisfy

Re
{

φ(iρ,η ;z)
}
≤ 0,

when ρ,η ∈ R, and η ≤ 0. Let f ∈ A with f ′(z) 6= 0. If

Re
{

φ

(
1+

z f ′′(z)
f ′(z)

, z2{ f ,z};z
)}

> 0, z ∈ U,

then f ∈ CV .
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CHAPTER 5

CONCLUSION

This conclusion chapter summarizes the work done in this thesis and gives some pos-

sible directions for future research. This thesis utilizes the methodology of differential

subordination to study complex-valued analytic functions with fixed initial coefficient

as well as with fixed second coefficient. The theory of differential subordination pi-

oneered by Miller and Mocanu that are discussed earlier in the introductory chapter

only focused on the general classes of analytic functions. By reformulating the ex-

isting theory on differential subordination, the corresponding theory developed by Ali

et al. [7] extends to the class of analytic functions with fixed initial coefficient. Some

known results of this newly enhanced theory for analytic functions with fixed initial

coefficient have been applied to the problems discussed in this thesis.

The linear second-order differential subordination

A(z)z2 p′′(z)+B(z)zp′(z)+C(z)p(z)+D(z)≺ h(z)

plays an important role in the first problem considered. The aim is to determine con-

ditions on the complex-valued functions A,B,C,D and h so that the linear second-

order differential subordination will have a β -dominant of the solution. A few special

cases of the function h are considered on the linear second-order differential subordi-

nation. These special cases of the function h include functions with positive real part,

bounded functions and convex functions. The appropriate differential implications cor-

responding to that particular cases are described geometrically. Under this framework,
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β -admissibility condition applied to the complex-valued functions A,B,C and D are

obtained to deduce these differential implications. Several earlier known results are

obtained as consequences.

As an application, the inclusion properties for linear integral operators on certain

subclasses of analytic functions with fixed initial coefficient are investigated in Chapter

3. The linear integral operators are derived from the integral inequalities by using some

differential inequalities in Chapter 2. As a consequence, the linear integral operators

is shown to map certain subclasses of analytic functions with fixed initial coefficient

into itself. These subclasses include class of functions with positive real part, bounded

functions and convex functions.

This thesis also examined further the analytic functions with fixed initial coefficient

that are associated with the normalized analytic functions with fixed second coefficient

as discussed in Chapter 4. An appropriate class of β -admissible functions related to

starlikeness and convexity are introduced. Subordination implications involving the

Schwarzian derivative are obtained by making use of these classes. As a further appli-

cation, sufficient conditions in term of Schwarzian derivative for normalized analytic

functions with fixed second coefficient to be starlike and convex are obtained. Since

the classes introduced by subordination naturally include well-known classes of star-

like and convex functions, earlier known results for these classes are consequences of

the theorem obtained.

This thesis only deals with first and second-order differential subordination. A pos-

sible direction for future research is to investigate higher orders of differential subordi-
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nation. The definitions for first and second-order differential subordination, presented

in the introduction chapter, could be extended very naturally to higher order differential

subordination. All of the results dealing with the solution of the third-order differential

subordination could be referred in [35, Section 6.2]. By appealing to these results, the

linear third-order differential subordination

A(z)z3 p′′′(z)+B(z)z2 p′′(z)+C(z)zp(z)+D(z)p(z)+E(z)≺ h(z),

could be considered. The solutions for higher order differential subordination are much

more difficult to obtain and very little is known. There is still a great deal of research

to be done in this field.

Another possible area for research is radius problems which continue to be an im-

portant area of study. The radius problem has been widely studied in recent years.

Various authors have investigated several interesting properties of the radius of various

classes of functions that are shaped by the coefficients of its mappings.

The radius of a property P in the class M , denoted by RP(M ), is the largest number

R such that every function in M has the property P in the disk Ur = {z ∈ C : |z|< r}

for every r < R. For example, the radius of convexity for the class S is 2−
√

3 since

every function f ∈ S maps Ur onto a convex region for r ≤ 2−
√

3 [22, Theorem 10,

p. 119] and the Koebe function k is the form of (1.2) (see Section 1.1) shows that this

bound cannot be improved.

Recently, many authors have investigated the problems of finding the radius con-

stant for some subclasses of A . For instance, radius constants for several classes of

analytic functions on the unit disk U which include the radius of starlikeness of a posi-
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tive order, radius of parabolic starlikeness, radius of Bernoulli lemniscate starlikeness,

and radius of uniform convexity can be found in Ali et al. [10]. Further work on the

similar problem could be considered for the analytic functions with fixed initial coef-

ficient. Several other subclasses of A and S are also of great interest.
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